脑电静息微状态在广泛性焦虑症中的应用与研究进展  

Application and research progress of electroencephalographic resting microstates in generalized anxiety disorder

在线阅读下载全文

作  者:李宸芮 吴毅明[1,2] 陈新旺[1,2] 和亚勇 南山竹 LI Chenrui;WU Yiming;CHEN Xinwang;HE Yayong;NAN Shanzhu(Henan University of Chinese Medicine,Zhengzhou 450046,China;the Third Affiliated Hospital of Henan University of Traditional Chinese Medicine,Zhengzhou 450008)

机构地区:[1]河南中医药大学,郑州450046 [2]河南中医药大学第三附属医院,郑州450008

出  处:《中国比较医学杂志》2025年第2期158-164,共7页Chinese Journal of Comparative Medicine

基  金:2022年度省级科技研发计划联合基金(222301420083);河南省中医药科学研究专项课题(2022ZYZD12);河南省“双一流”创建学科中医学科学研究专项(HSRP-DFCTCM-T-10)。

摘  要:近年来,在复杂的社会环境下,广泛性焦虑障碍(generalized anxiety disorder,GAD)的发病率处于逐年上升阶段。目前该疾病的诊断常依赖于DSM-5和ICD-10的标准,存在一定主观性和局限性,而了解大脑网络功能和结构连接的内在活动已被证明是当代神经科学研究的一个重要目标。脑电图(electroencephalogram,EEG)微状态能够观测到宽泛的频率成分,捕捉大脑活动的动态变化,以此为GAD诊断的准确性提供一种新思路。本文深入探讨EEG微状态特征,探讨GAD患者在大脑功能网络方面存在的异常现象,旨在进一步为GAD患者提供明确诊断、优化治疗效果并提高医疗质量。The incidence of generalized anxiety disorder(GAD)has recently been increasing year by year,in a complex social environment.The diagnosis of GAD currently often relies on DSM-5 and ICD-10 criteria,which include subjectivity and limitations.Understanding the intrinsic activity of brain network functions and structural connectivity is an important goal of contemporary neuroscience research.Electroencephalographic microstates are capable of observing broad frequency components and capturing dynamic changes in brain activity,thus providing a novel perspective on the accuracy of GAD diagnosis.This review considers the electroencephalographic microstate features and explores the abnormalities in the functional brain network in patients with GAD,with the aim of providing a clear diagnosis,optimizing the therapeutic efficacy,and improving the quality of medical care for patients with GAD.

关 键 词:广泛性焦虑障碍 脑电图 微状态 

分 类 号:R-33[医药卫生]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象