分布式驱动电动汽车多目标转矩分配策略  

Multi-objective Torque Distribution Strategy for Distributed Drive Electric Vehicles

在线阅读下载全文

作  者:李琴 李壮 汤建明 王勇 张博远 贺德强[1] Li Qin;Li Zhuang;Tang Jianming;Wang Yong;Zhang Boyuan;He Deqiang(School of Mechanical Engineering,Guangxi University,Nanning 530000;School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100080)

机构地区:[1]广西大学机械工程学院,南宁530000 [2]北京理工大学机械与车辆学院,北京100080

出  处:《汽车工程》2025年第3期489-498,共10页Automotive Engineering

基  金:广西自然科学基金青年基金(2025GXNSFBA069567);广西科技计划桂科AD基金(23026205);北京理工大学科技创新计划项目(2023YCXY023)资助。

摘  要:转矩分配策略对分布式驱动电动汽车起着至关重要的作用,可以提高车辆安全性和能耗经济性。为减少前后轴双电机驱动电动汽车的能耗,本文提出了一种基于分层控制架构的多目标转矩分配方法,综合考虑车辆安全性、操纵稳定性和能耗。上层是主动安全层,基于非线性模型预测控制(NMPC)实现车辆的安全性和稳定性控制;下层是转矩分配层,考虑电机空载损耗下的前后轴电机转矩控制。仿真结果表明,本文所提出的多目标转矩分配方法与平均分配方法相比,能够在确保车辆安全行驶的同时,提升车辆的稳定性,在NEDC和WLTC工况下整车能耗分别降低了6.6%和3.5%。The torque distribution strategy plays a crucial role in improving the safety and energy efficiency of distributed drive electric vehicles.In order to reduce the energy consumption of electric vehicles with dual-motor drive on the front and rear axles,a multi-objective torque distribution method based on a hierarchical control architecture is proposed in this paper,that comprehensively considers vehicle safety,handling stability,and energy efficiency.The upper layer is the active safety layer,which uses nonlinear model predictive control(NMPC)to achieve vehicle safety and stability control.The lower layer is the torque distribution layer,which considers the torque control of the front and rear axle motors under no-load loss of the motor.The simulation results show that compared with the average distribution method,the proposed multi-objective torque distribution method can improve the vehicle's stability while ensuring safe driving,with the total energy consumption reduced by 6.6%and 3.5%under the NEDC and WLTC driving cycles,respectively.

关 键 词:分布式驱动电动汽车 转矩分配 节能控制 稳定性控制 多目标优化 

分 类 号:U469.7[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象