检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪涛 徐杨[1,2] 曹辉[1,2] 刘亚新 马皓宇 张政 谢帅 常新雨 WANG Tao;XU Yang;CAO Hui;LIU Ya-xin;MA Hao-yu;ZHANG Zheng;XIE Shuai;CHANG Xin-yu(Hubei Provincial Key Laboratory of Smart Yangtze River and Hydropower Science,China Yangtze Power Co.,Ltd.,Yichang 443000,China;Cascade Dispatching Communication Center for the Three Gorges Project,China Yangtze Power Co.,Ltd.,Yichang 443000,China;Water Resources Department,Changjiang River Scientific Research Institute,Wuhan 430000,China;School of Civil and Hydraulic Engineering,Huazhong University of Science and Technology,Wuhan 430000,China)
机构地区:[1]中国长江电力股份有限公司智慧长江与水电科学湖北省重点实验室,湖北宜昌443000 [2]中国长江电力股份有限公司三峡水利枢纽梯级调度通信中心,湖北宜昌443000 [3]长江科学院水资源综合利用研究所,武汉430000 [4]华中科技大学土木与水利工程学院,武汉430000
出 处:《长江科学院院报》2025年第4期80-86,共7页Journal of Changjiang River Scientific Research Institute
基 金:长江水利委员会长江科学院开放研究基金项目(CKWV20221032/KY);水利部重大科技项目项目(SKS-2022120);湖北省自然科学基金联合基金(2022CFD164,2022CFD027)。
摘 要:三峡-葛洲坝梯级电站的水位预测关系到电站安全稳定运行和综合效益发挥,然而在动静库容计算体系转换关系复杂、电站下游非恒定流等多种因素的综合影响下,传统方法在短期水位预测过程时难以跟踪,在电站承担调峰、调频任务及复杂工况下有突破调度规程及开闸的风险,从而引发工程安全风险和经济损失。采用长短时记忆网络(LSTM)深度学习方法,建立了三峡-葛洲坝梯级电站超短期水位预测模型,利用水位、入库流量、出力数据预测电站超短期的水位过程,并通过大调峰工况数据对模型预测精度进行应用分析。研究结果表明该模型总体精度较高、稳定性和适应性较好,在不同调峰工况下预测精度稳定,但在水位极值处预测结果往往会出现均化现象。三峡、葛洲坝上游水位24 h预测平均误差均<0.05 m。研究成果可为梯级电站精细化调度提供技术支撑。Water level prediction for the Three Gorges-Gezhouba cascade hydropower stations is crucial for their safe and stable operation and overall benefits.Nevertheless,due to the combined effects of multiple factors,such as the complex transformation between dynamic and static storage-capacity calculations and the unsteady flow downstream of the stations,traditional methods struggle to accurately predict short-term water levels.When the stations perform peak-shaving and frequency-regulation tasks under complex operating conditions,there is a risk of violating scheduling regulations and opening the gates,which may lead to engineering safety hazards and economic losses.In this study,we employed the Long Short-Term Memory(LSTM)deep-learning method to develop an ultra-short-term water-level prediction model for the Three Gorges-Gezhouba Hydropower Stations.We utilized water-level,inflow,and output data to forecast the ultra-short-term water-level processes of the stations.Subsequently,we analyzed the prediction accuracy of the model using data from peak-shaving scenarios.The results show that the model exhibits high overall accuracy,stability,and adaptability,and maintains stable prediction accuracy under different peak-shaving conditions.However,the prediction results tend to be homogenized at extreme water levels.The average error of 24-hour water-level prediction for the upstream of the Three Gorges and Gezhouba is less than 0.05 m.These findings can offer technical support for the refined scheduling of cascade hydropower stations.
关 键 词:水位预测 梯级电站 LSTM 三峡电站 葛洲坝电站 误差分析
分 类 号:TV737[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7