检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:时薇 SHI Wei(Hebei University of Communication,Shijiazhuang 050000,China)
机构地区:[1]河北传媒学院,石家庄050000
出 处:《计算机应用文摘》2025年第8期93-95,98,共4页
基 金:2023年度河北省教育科学“十四五”规划立项课题:新一代信息技术条件下高校教学场景建设与管理研究(2304146)。
摘 要:目标检测与识别是计算机视觉中的关键技术,但在实际应用中常面临光照变化、遮挡和多目标等复杂场景的挑战。对此,文章深入研究了算法优化策略,分析了复杂场景对检测与识别的影响以及传统算法的局限性。通过数据增强、特征提取优化和模型结构改进等策略,特别是利用图像变换模拟复杂场景特征的数据增强方法,显著提升了算法在复杂场景下的性能。实验结果表明,优化后的算法在多个代表性数据集上实现了更高的准确率、召回率、F1分数和平均精度,同时保持了较高的处理速度,这说明优化策略有效应对了复杂场景的挑战,显著提升了目标检测与识别算法的性能。Object detection and recognition are key technologies in computer vision,but they often face challenges in complex scenes such as lighting changes,occlusion,and multiple targets in practical applications.In this regard,this article delves into algorithm optimization strategies,analyzes the impact of complex scenarios on detection and recognition,and the limitations of traditional algorithms.Through strategies such as data augmentation,feature extraction optimization,and model structure improvement,especially the use of image transformation to simulate complex scene features in data augmentation methods,the performance of the algorithm in complex scenes has been significantly improved.The experimental results show that the optimized algorithm achieves higher accuracy,recall,F1 score,and average precision on multiple representative datasets,while maintaining a high processing speed.This indicates that the optimization strategy effectively addresses the challenges of complex scenarios and significantly improves the performance of target detection and recognition algorithms.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62