基于表型机器人的小麦关键生育期表型检测方法  

Phenotyping Identification Method for Key Wheat Growth Stage Based on Phenotyping Robot

在线阅读下载全文

作  者:宋绪斌 王春颖 李明[1] 赵兴田 王庆隆 杨明清 刘平[1,3] SONG Xubin;WANG Chunying;LI Ming;ZHAO Xingtian;WANG Qinglong;YANG Mingqing;LIU Ping(College of Mechanical and Electronic Engineering,Shandong Agricultural University,Taian 271018,China;Shandong Engineering Research Center of Agricultural Equipment Intelligentization,Taian 271018,China;State Key Laboratory of Wheat Improvement,Shandong Agricultural University,Taian 271018,China)

机构地区:[1]山东农业大学机械与电子工程学院,泰安271018 [2]农业装备智能化山东省工程研究中心,泰安271018 [3]山东农业大学小麦育种全国重点实验室,泰安271018

出  处:《农业机械学报》2025年第3期67-79,共13页Transactions of the Chinese Society for Agricultural Machinery

基  金:山东省重点研发计划项目(2023TZXD004、2024LZGC006、2022LZGCQY002);山东省博士后创新项目(SDCX-ZG-202400195)。

摘  要:为解决传统田间小麦表型数据采集与解析自动化水平低和精准性差的问题,研制了小麦表型机器人底盘,并提出一种基于表型机器人的小麦关键生育期表型检测方法。首先,提出了TD-YOLO v11出苗检测模型,实现了田间小麦出苗精准识别。该模型在特征提取网络中引入可变性卷积模块(Deformable convolutional v4,DCNv4),增强模型捕捉上下文信息的能力,降低计算复杂度和参数量。此外,引入任务动态对齐检测头(Task dynamic align detection head,TDADH),通过动态选择特征,提高模型的分类和定位性能。然后,构建了融合多传感器与边缘计算的小麦表型解析系统,该系统集成了出苗检测方法与前期研究提出的抽穗期监测及开花期判定等表型解析方法,实现了田间表型数据的高效自动化采集与解析。结果表明,提出的方法具有较高的小麦出苗识别精度(R^(2)为0.908,RMSE为11.73,rRMSE为23.04%),同时实现小麦抽穗期及开花期表型的动态监测。该方法可用于田间小麦表型数据的高通量采集和高效解析,为小麦育种田间表型获取工作提供了高效、可靠的技术支持。Aiming to address the challenges of low automation and poor accuracy in traditional field wheat phenotyping data collection and analysis,a wheat phenotyping identification robot chassis was developed and a phenotypic detection method for key wheat growth stages was proposed based on a phenotyping robot.Initially,a TD-YOLO v11 seedling detection model was proposed to achieve automated and precise recognition of wheat seedling emergence in the field.The incorporation of the DCNv4 module into the feature extraction network enhanced its ability to capture contextual information,allowing for the extraction of feature representations with fewer network parameters,thereby reducing computational complexity and the number of parameters.Moreover,the introduction of a task dynamic alignment detection head further utilized information from intermediate layers,promoting consistency between classification and localization tasks,and improving the model's classification and localization performance during seedling detection.Subsequently,a phenotyping identification system for wheat was constructed,integrating multi-sensor fusion and edge computing.This system integrated the seedling detection method with previously proposed phenotyping identification techniques for heading stage monitoring and flowering stage determination,enabling the efficient and automated collection and analysis of field phenotypic data.The results indicated that the proposed method had a high accuracy in wheat seedling emergence identification(R^(2)=0.908,RMSE=11.73,rRMSE=23.04%).It also enabled dynamic monitoring of wheat heading and flowering stages,exhibiting excellent temporal feature capture capabilities.The system facilitated precise determination of wheat growth stages and accurate analysis of key phenotypic traits,including spike number,spikelet number,flower number,and seedling emergence.This method can be applied for high-throughput collection and efficient analysis of field wheat phenotypic data,providing effective and reliable technical support

关 键 词:小麦 表型机器人 解析系统 表型鉴定 YOLO v11 

分 类 号:S24[农业科学—农业电气化与自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象