检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘环宇 唐嘉城 邹顺 张藜瀚 于浩 王霜[1] LIU Huanyu;TANG Jiacheng;ZOU Shun;ZHANG Lihan;YU Hao;WANG Shuang(Institute of Modern Agricultural Equipment,Xihua University,Chengdu 610039,China)
机构地区:[1]西华大学现代农业装备研究院,成都610039
出 处:《农业机械学报》2025年第3期198-207,共10页Transactions of the Chinese Society for Agricultural Machinery
基 金:四川省青年基金项目(25QNJJ4155);四川省农业农村厅揭榜挂帅项目(ZZ20240018-2)。
摘 要:为提升农机路径跟踪平滑度和精度,降低环境噪声、传感器噪声等外部干扰,提出一种基于多目标优化的策略型自适应农机路径跟踪控制方法。以综合误差最小为目标,建立农机运动学模型及误差模型,采用拉丁超立方采样、策略型早停机制和适应度记忆对北极海鹦算法进行优化,利用优化后北极海鹦算法对模型预测算法的元参数进行自适应调整;以减少外部干扰并提升路径平滑程度为目标,建立农机状态多目标优化函数,引入多目标辅助优化算法,并与模型预测算法代价函数结合,对农机控制量进行求解。在此基础上引入事件触发的热启动技术,利用历史数据缩短模型预测控制优化时间。仿真试验结果表明,当农机作业速度为1.0 m/s时,最大绝对误差为0.06 m,平均误差为0.02 m。相较于原预测算法,单次运行时间仅增加0.007 s,路径平滑度平均提升83%。实地试验结果表明,当速度为0.5、1.0、1.5 m/s时,优化后算法平均误差相较于原始模型预测算法分别提升33%、35%、38%,路径平滑程度分别提升40%、51%、10%。Aiming to enhance the path tracking capability of agricultural machinery in complex environments,an adaptive predictive control method was proposed based on multi-objective optimization.The goal was to reduce external disturbances and improve path smoothness.Firstly,a kinematic model and error model of the machinery were developed,and its dynamic behavior under working conditions was analyzed.The arctic parrot algorithm was introduced,with a comprehensive error objective function designed for path tracking.By combining real-time feedback,AP adjusted model predictive control(MPC)parameters for better accuracy.Next,a multi-objective optimization algorithm was integrated with the MPC cost function to improve tracking accuracy,smoothness,and stability.To address delays caused by increased controller dimensionality,Latin hypercube sampling was used for efficient population initialization,reducing computational load.An early stopping mechanism and fitness memory were applied to accelerate the optimization process by halting iterations once a fitness threshold reached.Additionally,a warm start technique based on historical data was introduced to shorten optimization time,enabling faster application to new tasks.Simulation results at 1.0 m/s showed a lateral maximum absolute error of only 0.06 m,with an average error of 0.02 m,while running time remained comparable to traditional MPC algorithms.Path smoothness was improved by 83%,indicating enhanced stability.In field tests,the algorithm outperformed traditional MPC with error reductions of 33%,35%,and 38%at speeds of 0.5 m/s,1.0 m/s,and 1.5 m/s,respectively.Path smoothness was increased by 40%,51%,and 10%.These results validated the effectiveness of this method in practical applications,ensuring stable performance across complex scenarios and reducing path deviations due to external factors.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222