煤炭采样机械臂CAN控制中信号传输畸变补偿技术  

Compensation Technology for Distortion of CAN Control Signal Transmission in Coal Sampling Robot Arm

在线阅读下载全文

作  者:丁会成 陈红卫 高小普 DING Huicheng;CHEN Hongwei;GAO Xiaopu(Guoneng Ningdong No.2 Power Generation Co.,Ltd.,Lingwu 750411,China;Nanjing Guodian Environmental Protection Technology Co.,Ltd.,Nanjing 210031,China)

机构地区:[1]国能宁东第二发电有限公司,宁夏灵武750411 [2]南京国电环保科技有限公司,江苏南京210031

出  处:《机械制造与自动化》2025年第2期243-247,共5页Machine Building & Automation

摘  要:针对煤炭采样机械臂在CAN协议下驱动信号变量与关节信号变量之间的正、逆向求解模型复杂,各信号之间存在运动学耦合干扰,使得信号传输畸变严重的问题,提出一种煤炭采样机械臂CAN控制信号传输畸变补偿技术。引入分形分析(DFA)方法,对EEMD分解后的IMF分量展开分解,并在分解过程中加入DFA方法。根据DFA方法确定二级分量,利用DFA方法对本次分解后的IMF分量展开处理,获得尺度指数可以分辨出有用分量和畸变分量信号;通过修正畸变信号的幅值和相位,消除信号传输过程中的失真和延迟,实现对信号传输畸变的补偿。实验结果表明:该方法的信号处理效果好、信号补偿精度高。To solve the problem of the serious transmission distortion of the transmission signal of CAN protocoled coal sampling robotic arm due to complexity of forward and reverse solution models between the driving signal variables and the joint signal variables and kinematic coupling interference between each signal,a coal sampling robotic arm CAN control signal transmission distortion compensation technology is proposed.The fractal analysis(DFA)method is ntroduced to decompose the IMF components after EEMD decomposition,and the DFA method is added during the decomposition process to determine the secondary components.The DFA method is applied to process the IMF components after the decomposition,a scale index capable of distinguishing useful and distorted component signals is obtained.The amplitude and phase of distorted signals are corrected to eliminate distortion and delay in signal transmission and achieve the compensation for signal transmission distortion.The experimental results show that the proposed method has good signal processing effect and high signal compensation accuracy.

关 键 词:机械臂 CAN 信号补偿 集合经验模态分解 Lissajou图 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象