检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:聂铭涛 刘颖珂 程海峰 刘小雄[1] NIE Mingtao;LIU Yingke;CHENG Haifeng;LIU Xiaoxiong(School of Automation,Northwestern Polytechnical University,Xi'an 710072,China;Unit 94521,PLA,Zibo 255399,China)
机构地区:[1]西北工业大学自动化学院,西安710072 [2]中国人民解放军94521部队,山东淄博255399
出 处:《计算机测量与控制》2025年第4期147-154,161,共9页Computer Measurement &Control
摘 要:针对多目标多机协同路径规划问题,在MOEA/D算法求解的基础上,采用深度强化学习方法对MOEA/D算法中计算资源分配方法进行了研究;对多机协同路径规划问题进行了研究,分析了相关约束以及优化目标,建立多机协同路径规划多目标优化模型;结合协同进化思想,对基于分解的多目标进化协同路径规划进行了研究;对基于强化学习的计算资源分配策略进行了研究,实现了深度强化学习在多目标优化计算资源分配问题上的应用;实现了多机协同路径规划仿真验证;经仿真测试,算法以更高性能完成多机协同路径规划任务,提高了多机协同路径规划中计算资源分配策略的能力。Aiming at the problem of multi-objective and multi-UAV cooperative path planning,based on the solution of MOEA/D algorithm,a deep reinforcement learning method is adopted to study the computational resource allocation method in the MOEA/D algorithm;Study the multi-UAV cooperative path planning,analyze the relevant constraints and optimization objectives,and establish the multi-objective optimization model of multi-UAV cooperative path planning;Investigate the multi-objective evolutionary cooperative path planning based on decomposition by combined with the idea of co-evolution,study the computational resource allocation strategy based on reinforcement learning,realize the application of deep reinforcement learning in the multi-objective optimization of computational resource allocation,and achieve the simulation verification of the multi-UAV cooperative path planning;Though simulation test,the algorithm completes the multi-UAV cooperative path planning task with a higher performance and improves the performance of the computational resource allocation strategy.
关 键 词:多目标进化 深度强化学习 计算资源分配 协同路径规划 基于分解
分 类 号:TP4081[自动化与计算机技术] V219[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7