检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张硕[1] 李潇 陈轶嵩 赵轩[1] 余强[1] 余曼 ZHANG Shuo;LI Xiao;CHEN Yisong;ZHAO Xuan;YU Qiang;YU Man(School of Automobile,Chang'an University,Xi'an 710064,China;School of Construction Machinery,Chang'an University,Xi'an 710064,China)
机构地区:[1]长安大学汽车学院,西安710064 [2]长安大学工程机械学院,西安710064
出 处:《汽车安全与节能学报》2025年第2期303-314,共12页Journal of Automotive Safety and Energy
基 金:国家自然科学基金项目(52372375;52302427);陕西省重点研发计划项目(2023-YBGY-122)。
摘 要:针对智能车辆在变速度和变路面附着系数工况时轨迹跟踪精度和操纵稳定性差的问题,设计了一种基于模型预测控制(MPC)的自适应轨迹跟踪控制方法。基于侧向力滑模观测器和魔术轮胎逆模型设计轮胎等效侧偏刚度估计方法,实时修正动力学模型参数;制定了兼顾路面附着系数和行驶车速的动态预测时域控制策略,建立了自适应MPC的轨迹跟踪控制器;通过Simulink-CarSim联合仿真验证在变附着系数路面变速双移线工况下该方法的有效性。结果表明:与传统MPC控制方法相比,该文设计的方法在高附着系数路面中高速变速行驶时,操纵稳定性得以改善,略微牺牲跟踪精度,平均横摆角速度能改善19.82%;在变附着系数路面低中速变速行驶时平均横向偏移量和平均横摆角速度分别降低了84.90%和46.23%,能够有效改善轨迹跟踪控制精度和操纵稳定性。Aiming at the problem of poor trajectory tracking accuracy and handling stability of intelligent vehicles under variable speed and variable road adhesion coefficient conditions,an adaptive trajectory tracking control method based on model predictive control(MPC)was designed.Based on the lateral force sliding mode observer and the inverse model of magic tire,the tire equivalent cornering stiffness estimation method was designed to correct the dynamic model parameters in real time.A dynamic predictive time-domain control strategy that took into account the road adhesion coefficient and driving speed was developed,and an adaptive MPC trajectory tracking controller was established.The effectiveness of the adaptive model predictive control method was verified by Simulink-CarSim joint simulation under the conditions of double lane change with variable speed and road adhesion coefficient compared with the traditional MPC control method.The results show that compared with the traditional MPC control method,the control stability of the proposed method is improved at high speed and variable speed on the high adhesion coefficient road,and the average yaw speed is improved by 19.82%at a slight sacrifice of tracking accuracy.The average lateral offset and yaw velocity are reduced by 84.90%and 46.23%respectively when driving at medium and low speed on the road surface with variable adhesion coefficient,which can effectively improve the trajectory tracking control accuracy and handling stability.
关 键 词:轨迹跟踪 模型预测控制(MPC) 侧偏刚度估计 变预测时域
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200