检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘畅 许林[1] LIU Chang;XU Lin(Anhui Special Equipment of Inspection Institute,Hefei 230051,China)
出 处:《微特电机》2025年第4期61-65,70,共6页Small & Special Electrical Machines
摘 要:研究电梯曳引机轴承故障多分量多尺度诊断技术,通过充分细化轴承振动信号,挖掘信号不同尺度层次上的特征,获取更加全面可靠的轴承故障诊断结果。采用基于局部均值分解(LMD)的多分量分析技术,分解电梯曳引机轴承振动信号,获取多个乘积函数(PF)分量,经互相关系数完成PF分量筛选后,进行PF分量重构;采用基于多尺度排列熵(MPE)的多尺度分析方法,计算各个重构PF分量在不同尺度下的排列熵,将其作为电梯曳引机轴承故障诊断的特征,组建特征向量,输入到孪生支持向量机构建的故障诊断模型中,获取电梯曳引机轴承故障诊断结果。实验结果表明,该技术能够有效分解不同故障状态下的振动信号,获取PF分量并完成其筛选,可以精准诊断不同电梯曳引机轴承的故障类型。This study investigated the multi-component and multi scale diagnostic technology for elevator traction machine bearing faults.By fully refining the bearing vibration signal and mining the characteristics at different scales of the signal,more comprehensive and reliable bearing fault diagnosis results could be obtained.Using the multi-component analysis technique based on local mean decomposition(LMD),the vibration signal of the elevator traction machine bearing was decomposed to obtain multiple product function(PF)components.After completing the PF component screening through cross-correlation coefficients,the PF component was reconstructed.Using a multi scale analysis method based on multiscale permutation entropy(MPE),the permutation entropy of each reconstructed PF component at different scales was calculated,which was used as a feature for elevator traction machine bearing fault diagnosis.A feature vector was constructed and input into the fault diagnosis model built by the twin support vector mechanism to obtain the fault diagnosis results of elevator traction machine bearings.The experimental results showed that this technology can effectively decompose vibration signals under different fault states to obtain PF components and complete their screening.Accurate diagnosis of different types of elevator traction machine bearing faults could be obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249