基于序数图变换的雷达海面小目标检测算法  

Radar Small Target Detection in Sea Surface Based on Ordinal Graph Transform

在线阅读下载全文

作  者:宋佳龙 胡国兵 杨莉 赵嫔姣 黄皓冉 SONG Jialong;HU Guobing;YANG Li;ZHAO Pinjiao;HUANG Haoran(School of Electronic and Information Engineering,Jinling Institute of Technology,Nanjing 211169,China)

机构地区:[1]金陵科技学院电子信息工程学院,南京211169

出  处:《电讯技术》2025年第4期588-595,共8页Telecommunication Engineering

基  金:国家自然科学基金青年基金项目(62101223);中央高校基本科研业务费专项资金项目(2242023K30003,2242023K30004);江苏省自然科学基金面上项目(BK20241717);江苏省高等学校自然科学研究重大项目(20KJA510008);“青蓝工程”项目。

摘  要:针对现有基于图域变换的雷达海面小目标检测算法仅考虑单个样本之间的相关性,存在性能不佳、复杂度高等问题,提出了一种基于序数图变换的改进算法。首先,将雷达回波信号的自相关函数转换成可有效获取状态向量之间关联性的序数图,进而提取该图的无符号拉氏矩阵最大特征值作为检测统计量,以实现区分海杂波和目标信号的目的。以McMaster大学提供的实测全相参X波段雷达数据集为对象,对算法的性能进行了广泛评估,结果表明所提算法的平均接收机工作特性曲线下面积(Area under Curve,AUC)可达0.907,优于现有算法,且其计算复杂度适中。In response to the challenges of poor performance and high computational complexity in existing radar sea surface small target detection algorithms based on graph domain transformations,which only consider the correlation between individual samples,an improved detection algorithm based on ordinal graph transformation is proposed.First,the auto-correlation function of the radar echo signal is converted into an ordinal graph,which effectively captures the correlations between state vectors.Then,the maximum eigenvalue of the graph̓s signless Laplacian matrix is extracted as the detection statistic,facilitating the differentiation between the sea clutter and target signals.The algorithm̓s performance is extensively evaluated using the measured fully coherent X-band radar dataset provided by McMaster University.The results show that the average area under the receiver operating characteristic curve(AUC)of the proposed algorithm reaches 0.907,outperforming existing algorithms,with a moderate computational complexity.

关 键 词:海面小目标 目标检测 序数图变换 图无符号拉氏矩阵 

分 类 号:TN911.23[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象