基于CEEMDAN和频谱时间图卷积网络的电力负荷预测方法  

Power Load Prediction Method Based on CEEMDAN and Spectral Time Graph Convolutional Networks

在线阅读下载全文

作  者:朱莉[1] 夏禹 朱春强 邓凡 ZHU Li;XIA Yu;ZHU Chunqiang;DENG Fan(Sehool of Computer Science and Technology,Xi'an University of Science and Technology,Xi'an 710000,Shanxi,China;Sehool of Computer Sxience and'Technology,Faculty of Telecommunication,Xian Jiaotong University,Xi'an 710000,Shanxi,China;State Grid Shanxi Electric Power Company,Xi'an 710000,Shaanxi,China)

机构地区:[1]西安科技大学计算机科学与技术学院,陕西西安710000 [2]西安交通大学电信学部计算机科学与技术学院,陕西西安710000 [3]国网陕西省电力公司,陕西西安710000

出  处:《计算机工程》2025年第4期339-349,共11页Computer Engineering

基  金:国家重点研发计划(2019YFB1405002);陕西省自然科学基础研究项目(2022JM317);国网陕西电力数字化专项项目(B326PX23001)。

摘  要:针对电力负荷数据存在非平稳性且传统预测模型不能精确获取时序负荷数据的空间相关性和时间依赖性,导致预测精度低的问题,设计并实现一种基于完全集成经验模式分解的自适应噪声完备性(CEEMDAN)和频谱图卷积网络的电力负荷预测方法。首先使用CEEMDAN将目标负荷序列分解为多个本征模态分量(IMF),通过计算模糊熵对IMF进行重构;然后使用频谱时间图卷积网络对重构后分量的空间相关性和时间依赖性进行挖掘,得到各分量的预测结果;最后将各分量的预测结果线性相加得到最终预测结果。实验结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差3个评价指标分别达到了0.72 KW、0.89 KW、0.92%,相较于对比模型StemGnn、TCN、LSTM、Informer、FEDformer,预测精度分别提高了37.9%、17.2%、20.8%、22.5%、12.1%。证明本文所提出的预测方法可以有效降低非平稳性对预测结果的影响,精确获取时序负荷数据的空间相关性和时间依赖性,提高预测精度。The traditional forecasting model cannot accurately determine the spatial correlation and temporal dependence of time-series load data,resulting in low forecasting accuracy.To address this issue and the nonstationarity of power load data,a time-series power load forecasting method based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)and a spectrogram convolutional network is designed and implemented in this study.First,the target load sequence is decomposed into multiple Intrinsic Mode Function(IMF)components using CEEMDAN,and the IMF is reconstructed by calculating the fuzzy entropy.Subsequently,the temporal correlation and spatial dependence of the reconstructed components are mined using the spectral time graph convolutional network,and the prediction results for each component are obtained.Finally,these prediction results are summed linearly to obtain the final prediction results.The experimental results show that the proposed method achieves a Mean Absolute Error(MAE),Root Mean Square Error(RMSE),and Mean Absolute Percentage Error(MAPE)of 0.72 KW,0.89 KW,and 0.92%,respectively.The prediction accuracy of the proposed method is 37.9%,17.2%,20.8%,22.5%,and 12.1%greater than that of StemGnn,TCN,LSTM,Informer,and FEDformer,respectively.The results demonstrate that the proposed prediction method can effectively reduce the influence of non-stationarity on the prediction results and accurately obtain the spatial correlation and temporal dependence of the time-ordered load data,leading to improved prediction accuracy.

关 键 词:电力负荷预测 经验模态分解 本征模态分量 图卷积网络 模糊熵 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象