检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄丹 Huang Dan(Faculty of Business Administration,Moutai University,Renhuai,Guizhou 564507,China)
出 处:《计算机时代》2025年第4期59-63,共5页Computer Era
基 金:茅台学院高层次人才科研启动经费项目(mygccrc[2024]021);贵州省高校人文社会科学研究项目(2024RW146)。
摘 要:白酒股票价格的准确预测可辅助投资决策,提升企业风险控制与资产配置效率。传统方法大多侧重于单只股票的预测,忽视了股票间的相互影响。为此,本文结合时空模块和门控策略,提出一种新的时空预测模型STAG-Net。该模型基于GRU和空间注意力机制构建时空模块来捕捉股票之间的时空依赖性,并通过一种门控策略纳入历史均值以增强时序建模能力。实验结果表明,STAG-Net模型在多元白酒股票价格预测任务中显著优于传统的XGBoost、LSTM、GRU和Attention方法,可为金融市场中白酒板块的投资决策提供可靠的技术支持。The accurate prediction of Baijiu stock price can assist in investment decision-making and improve the efficiency of enterprise risk control and asset allocation.Traditional methods mostly focus on predicting individual stocks,ignoring the mutual influence between stocks.Therefore,this article combines spatiotemporal modules and gating strategies to propose a new spatiotemporal prediction model STAG-Net.This model is based on GRU and spatial attention mechanism to construct spatiotemporal modules to capture spatiotemporal dependencies between stocks,and incorporates historical means through a gating strategy to enhance temporal modeling ability.The experimental results show that the STAG-Net model is significantly superior to the traditional XGBoost,LSTM,GRU and Attention methods in the task of forecasting the stock price of diversified Baijiu,and can provide reliable technical support for the investment decision of Baijiu sector in the financial market.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7