基于人工鱼群算法的港口物流配送路径规划研究  被引量:6

Research on port logistics distribution path planning based on artificial fish swarm algorithm

在线阅读下载全文

作  者:崔叶竹 刘明 CUI Ye-zhu;LIU Ming(Hebei University of Environmental Engineering,Qinhuangdao 066102,China)

机构地区:[1]河北环境工程学院,河北秦皇岛066102

出  处:《舰船科学技术》2020年第6期190-192,共3页Ship Science and Technology

基  金:河北省科技厅2019年度软科学专项资助项目

摘  要:针对原有港口物流路径规划方法在使用无法设定最优路线、造成运输成本较高的问题,引用人工鱼群算法,设计基于人工鱼群算法的港口物流配送路径规划方法。根据港口物流配送路径规划框架,设计港口需求点节点表现形式,并设定路径规划约束条件。根据约束条件结合VPR数学模型,完成配送路径规划模型的构建。引用人工鱼群算法将配送过程模拟为鱼群觅食过程,选定最优行进方向与距离,对上述设定路径规划模型展开优化。至此,基于人工鱼群算法的港口物流配送路径规划方法设计完成。构建实验环节,通过与原有方法规划结果对比可知,此方法规划结果路程缩短于原有方法,有效降低运输成本。综上可知,此方法路径规划能力优化原有方法。Aiming at the problem that the original port logistics route planning method cannot be used to set the optimal route, which caused high transportation costs, an artificial fish swarm algorithm was introduced to design a port logistics distribution route planning method based on the artificial fish swarm algorithm. According to the port logistics distribution path planning framework, design the port demand point node representation form, and set the path planning constraints. According to the constraints and the VPR mathematical model, the construction of the distribution path planning model is completed. An artificial fish swarm algorithm was introduced to simulate the distribution process as a fish swarm foraging process. The optimal travel direction and distance were selected, and the above-mentioned set path planning model was optimized. So far, the design method of port logistics distribution path based on artificial fish swarm algorithm has been completed. In the construction of the experimental link, it can be seen from the comparison with the planning results of the original method that the planning result of this method is shorter than the original method, which effectively reduces the transportation cost. In summary, the path planning capability of this method optimizes the original method.

关 键 词:人工鱼群算法 货运港口 物流配送 路径规划 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象