舰船通信系统终端软件的漏洞智能检测方法  被引量:1

Research on intelligent detection of vulnerability in terminal software of ship communication system

在线阅读下载全文

作  者:谭凤 陶雪娇 TAN Feng;TAO Xue-jiao(School of Software,Chongqing Institute of Engineering,Chongqing 400000,China)

机构地区:[1]重庆工程学院软件学院,重庆400000

出  处:《舰船科学技术》2021年第8期145-147,共3页Ship Science and Technology

基  金:重庆市教委科技项目(KJQN202001905);重庆工程学院科研基金资助项目(2020xsky07);重庆市自然科学基金面上项目(cstc2020jcyj-msxmX1033)

摘  要:传统舰船通信系统终端软件漏洞检测方法在实际应用过程中存在多样性漏洞特征检测自适应性差,导致全局漏洞检测精准度降低的问题。因此,结合当下通信系统的信息即时性与交互实时性特点,提出舰船通信系统终端软件的漏洞智能检测方法研究。根据船舶通信系统终端软件即时交互协议特点,对其协议进行即时协议漏洞分析;根据分析结果对其进行漏洞数据进行多属性特征模糊定位;通过粒子群算法对多属性类别漏洞进行精准定位,并在此计算过程中优化漏洞检测阈值的适应范围。通过实验数据对比结果表明:提出的漏洞检测方法,能够适应多种类型的漏洞识别,且识别精准度较传统方法提升46.18%。The single vulnerability feature location algorithm used in the terminal software vulnerability detection method of traditional ship communication system has the problem of poor adaptability of diversity vulnerability feature detection in the process of practical application,which leads to the reduction of global vulnerability detection accuracy.Therefore,combined with the information immediacy and interactive real-time characteristics of the current communication system,the intelligent detection method of vulnerabilities in terminal software of ship communication system is proposed.Firstly,according to the characteristics of the instant interaction protocol of the terminal software of the ship communication system,the vulnerability analysis of the protocol is carried out,and then the multi-attribute feature fuzzy location is carried out according to the analysis results.Finally,the multi-attribute category vulnerability is accurately located by particle swarm optimization algorithm.The experimental results show that the proposed vulnerability detection method can adapt to various types of vulnerability identification,and the accuracy of recognition is 46.18%higher than that of the traditional method.

关 键 词:舰船通信 系统终端 漏洞 智能检测 

分 类 号:TP357[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象