检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Cheng-jian ZHANG Yang WANG Hao HAN
机构地区:[1]School of Mathematics and Statistics,Huazhong University of Science and Technology,Wuhan 430074,China [2]Hubei Key Laboratory of Engineering Modeling and Scientific Computing,Huazhong University of Science and Technology,Wuhan 430074,China
出 处:《Acta Mathematicae Applicatae Sinica》2025年第2期400-413,共14页应用数学学报(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant No.12471379).
摘 要:This paper deals with numerical solutions for nonlinear first-order boundary value problems(BVPs)with time-variable delay.For solving this kind of delay BVPs,by combining Runge-Kutta methods with Lagrange interpolation,a class of adapted Runge-Kutta(ARK)methods are developed.Under the suitable conditions,it is proved that ARK methods are convergent of order minfp;++1g,where p is the consistency order of ARK methods and;are two given parameters in Lagrange interpolation.Moreover,a global stability criterion is derived for ARK methods.With some numerical experiments,the computational accuracy and global stability of ARK methods are further testified.
关 键 词:delay boundary value problems adapted Runge-Kutta method Lagrange interpolation error analysis global stability
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7