深基坑开挖引起的邻近建筑物变形预测研究  

Research on Deformation Prediction of Adjacent Buildings Caused by Deep Foundation Excavation

在线阅读下载全文

作  者:万达 WAN Da(China Railway 18th Bureau Group Third Engineering Co.,Ltd.,Zhuozhou,Hebei 072750,China)

机构地区:[1]中铁十八局集团第三工程有限公司,河北涿州072750

出  处:《施工技术(中英文)》2025年第7期45-50,共6页Construction Technology

基  金:中国铁建股份有限公司2024年度科技研究开发计划(2024-C1);中铁十八局集团有限公司2022年度科研创新项目(C2022-051)。

摘  要:为提高沉降预测的精度和速度,提出了一种改进的支持向量机模型用于预测沉降。引入麻雀搜索算法优化支持向量机的惩罚参数和核函数参数,提高支持向量机的预测效果。以南昌地铁4号线上沙沟站基坑为例,进行模型实证分析,利用改进的支持向量机进行基坑开挖引起的周边建筑物沉降预测,并与传统的支持向量机模型进行对比,经过麻雀搜索算法改进的支持向量机模型MSE降低了74%,RMSE降低了49%,MAPE降低了27%,验证了改进后的支持向量机具有较好的预测精度和预测速度。对改进的支持向量机进行了泛化能力实证,验证了该模型的良好泛化能力。An improved support vector machine model is proposed to predict settlement to improve the accuracy and speed of settlement prediction.The sparrow search algorithm was introduced to optimize the penalty parameters and kernel function parameters of the support vector machine to improve its prediction effect.Taking the foundation excavation of Shangshagou Station of Nanchang Metro Line 4 as an example,the empirical analysis of the model was carried out.The improved support vector machine was used to predict the settlement of surrounding buildings caused by foundation excavation excavation and compared with the traditional support vector machine model.The MSE of the support vector machine model improved by the sparrow search algorithm is reduced by 74%.The RMSE and the MAPE are reduced by 49%and 27%,respectively,which verifies that the improved support vector machine has better prediction accuracy and prediction speed.The generalization ability of the improved support vector machine has been verified and proven to be excellent.

关 键 词:地铁 深基坑 支持向量机 麻雀搜索算法 变形 预测 泛化能力 

分 类 号:TU753[建筑科学—建筑技术科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象