检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张凤明 苏谦[1] 邓志兴 王呈金 程梦凡 周辰泠 ZHANG Fengming;SU Qian;DENG Zhixing;WANG Chengjin;CHENG Mengfan;ZHOU Chenling(School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China;School of Civil Engineering,Central South University,Changsha 410083,China)
机构地区:[1]西南交通大学土木工程学院,四川成都610031 [2]中南大学土木工程学院,湖南长沙410083
出 处:《合肥工业大学学报(自然科学版)》2025年第4期563-569,共7页Journal of Hefei University of Technology:Natural Science
基 金:国家自然科学基金资助项目(51978588);国家自然科学基金联合基金资助项目(U2268213)。
摘 要:为解决受噪声影响地铁车站基坑变形预测精度受到限制的问题,文章首先使用高斯滤波(Gaussian filter,GF)算法对监测数据进行降噪处理,再采用高斯过程回归(Gaussian process regression,GPR)算法预测基坑变形,构建一种GF-GPR基坑变形预测模型,并将GF-GPR模型应用于成都某车站地铁基坑的变形预测。结果表明:原始监测数据存在大量噪声,变形不连续,经过GF算法降噪后基坑变形序列变得平稳,同时有用的突变信息仍然被保留。降噪后数据的信噪比(signal-to-noise ratio,SNR)为12.884~17.139,均方误差(mean square error,MSE)为0.430~0.875 mm;所提出的GF-GPR模型的变形预测结果与基坑实际变形趋势一致,GF-GPR模型的预测精度相较于单一GPR算法提高了31%~81%,最大均方根误差降低了0.4367~1.2881 mm。该研究成果可为基坑变形智能预测、施工事故防范提供参考。In order to solve the problem that the prediction accuracy of foundation pit deformation in subway stations is limited due to noise,Gaussian filter(GF)algorithm is used to reduce the noise of monitoring data,and then Gaussian process regression(GPR)algorithm is used to predict foundation pit deformation,and a GF-GPR foundation pit deformation prediction model is constructed.The GF-GPR model is applied to the deformation prediction of a subway station foundation pit in Chengdu City.The results show that there is a lot of noise in the original monitoring data,and the deformation is discontinuous.After the noise reduction by GF algorithm,the deformation sequence of foundation pit becomes stable,and the useful mutation information is still retained.The signal-to-noise ratio(SNR)and mean square error(MSE)range from 12.884 to 17.139 and 0.430 mm to 0.875 mm,respectively.The deformation prediction results of the proposed GF-GPR model are consistent with the actual deformation trend of the foundation pit.Compared with the single GPR model,the prediction accuracy of the GF-GPR model is increased by 31%-81%,and the maximum root mean square error(RMSE)is reduced by 0.4367-1.2881 mm.The research results can provide references for the intelligent prediction of foundation pit deformation and the prevention of construction accidents.
关 键 词:地铁车站 组合预测模型 变形预测 基坑水平位移 高斯滤波(GF) 高斯过程回归(GPR)
分 类 号:U216.417[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70