基于自然同质目标的隧道点云强度校正及应用  

Tunnel Strength Correction and Application Based on Natural Homogeneous Targets

在线阅读下载全文

作  者:程小龙 万轶炜 胡煦航 傅静雅 Cheng Xiaolong;Wan Yiwei;Hu Xuhang;Fu Jingya(School of Civil and Surveying&Mapping Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China;Wuhan Institute of Surveying and Mapping,Wuhan 430000,Hubei,China)

机构地区:[1]江西理工大学土木与测绘工程学院,江西赣州341000 [2]武汉市测绘研究院,湖北武汉430000

出  处:《应用激光》2025年第2期197-207,共11页Applied Laser

基  金:国家自然科学基金(42004158);江西省自然科学基金青年项目(20224BAB212025)。

摘  要:LiDAR强度数据可提供良好的光谱分离性,是应用于盾构隧道病害检测的理想数据源。以盾构隧道点云数据为研究对象,通过分析隧道强度信息的影响因素,提出一种基于自然同质目标的强度校正模型。基于校正的强度数据以及生成的隧道表面强度图像实现渗水区域的检测。实验表明,提出的模型能有效消除由距离和入射角引起的强度偏差,在变异系数比上表现优异,校正后同类物质强度信息趋于一致。基于改正后的强度及生成的强度图像,在610~640 m处提取的实际渗漏水面积为4.17 m^(2),占区间总面积的1.05%,在该段隧道中正确检测出漏水区域36个,说明该方法能有效识别渗漏水病害区域。LiDAR intensity data can provide good spectral separation,which is an ideal data source applied to shield tunnel disease detection.In this paper,we take shield tunnel point cloud data as the research object and propose an intensity correction model based on a natural homogeneous target by analyzing the influencing factors of tunnel intensity information.And based on the corrected intensity data and the generated tunnel surface intensity image to achieve the detection of water seepage area.The experiments show that the model proposed in this paper can effectively eliminate the intensity deviation caused by distance and incidence angle and performs well in the coefficient of variation ratio,and the corrected intensity information of similar materials tends to be consistent.The actual water seepage area extracted based on the corrected intensity and the generated intensity image at 610-640 m is 4.17 m^(2),accounting for 1.05% of the total area of the interval,and 36 water leakage areas are correctly detected in this section of the tunnel,indicating that the water seepage disease areas can be effectively identified.

关 键 词:盾构隧道 点云强度 隧道管壁 渗漏水识别 

分 类 号:TN249[电子电信—物理电子学] TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象