基于Isight的汽车车轮多目标优化  

Multi-objective optimization of automobile wheels based on Isight

在线阅读下载全文

作  者:海涛 王东源 张丹[1] HAI Tao;WANG Dongyuan;ZHANG Dan(School of Automotive and Transportation Engineering,Jiangsu University of Technology,Changzhou 213001,China)

机构地区:[1]江苏理工学院汽车与交通工程学院,江苏常州213001

出  处:《江苏理工学院学报》2025年第1期69-79,共11页Journal of Jiangsu University of Technology

摘  要:为实现汽车车轮轻量化并降低行驶阻力,文章首先在扭转与径向2种工况下,以最小化柔度为目标对车轮轮毂进行多工况拓扑优化。随后,建立车轮与轮毂的三维模型,对轮辐设计变量进行参数化处理,并采用最优拉丁超立方抽样法构建多样化数据集。通过旋转壁面法计算各组车轮模型的气动阻力系数(Cd)、轮毂质量及弯曲疲劳安全系数。基于Kriging近似模型,结合NSGA-Ⅱ算法进行全局寻优,以最小化阻力系数和质量为目标,并确保弯曲疲劳工况下安全系数不低于1.6,构建多目标优化策略,最终获得帕累托最优解集。优化结果表明,相较于原始车轮模型,最优方案下车轮质量减轻了7.2%,阻力系数降低了4.7%。该方案在保证车轮疲劳性能的同时,实现了轻量化与风阻降低的双重目标。In order to achieve lightweighting automobile and reduce driving resistance,this paper first conducts multi-condition topology optimization of the wheel hub with the goal of minimizing flexibility under both torsional and radial operating conditions.Subsequently,a three-dimensional model of the wheel and hub is established,the design variables of the spokes are parameterized,and then the optimal latin hypercube sampling method is used to construct a diversified dataset.By using the rotating wall method,the aerodynamic drag coefficient(Cd),hub mass,and bending fatigue safety factor of each group of wheel models can be calculated.Using the Kriging approximation model and combining with the NSGA-Ⅱ algorithm for global optimization,a multi-objective optimization strategy is set to minimize the resistance coefficient and mass while ensuring a safety factor of not less than 1.6 under bending fatigue conditions,ultimately obtaining a pareto optimal solution set.The optimization results show that compared to the original wheel model,the optimal solution reduces the wheel mass by 7.2% and the drag coefficient by 4.7%.This scheme achieves the dual goals of lightweighting and wind resistance reduction while ensuring the fatigue performance of the wheels.

关 键 词:拓扑优化 旋转壁面法 多目标优化 疲劳分析 

分 类 号:U463.3[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象