A Transformer Based on Feedback Attention Mechanism for Diagnosis of Coronary Heart Disease Using Echocardiographic Images  

在线阅读下载全文

作  者:Chunlai Du Xin Gu Yanhui Guo Siqi Guo Ziwei Pang Yi Du Guoqing Du 

机构地区:[1]School of Information Science and Technology,North China University of Technology,Beijing,100144,China [2]Department of Computer Science,University of Illinois Springfield,Springfield,IL 62703,USA [3]Department of Ultrasound,Sun Yat-sen Memorial Hospital,Sun Yat-sen University,Guangzhou,510120,China

出  处:《Computers, Materials & Continua》2025年第5期3435-3450,共16页计算机、材料和连续体(英文)

基  金:supported by the National Natural Science Foundation of China(82071948,82472003);Discovery Partners Institute and Shield of Illinois,Guangdong Natural Science Foundation(2022A1515011675);the Scientific Research Fund for Hundred Talents Program Talent Introduction of Sun Yat-sen University(1320323001).

摘  要:Coronary artery disease is a highly lethal cardiovascular condition,making early diagnosis crucial for patients.Echocardiograph is employed to identify coronary heart disease(CHD).However,due to issues such as fuzzy object boundaries,complex tissue structures,and motion artifacts in ultrasound images,it is challenging to detect CHD accurately.This paper proposes an improved Transformer model based on the Feedback Self-Attention Mechanism(FSAM)for classification of ultrasound images.The model enhances attention weights,making it easier to capture complex features.Experimental results show that the proposed method achieves high levels of accuracy,recall,precision,F1 score,and area under the receiver operating characteristic curve(72.3%,79.5%,82.0%,81.0%,and 0.73%,respectively).The proposed model was compared with widely used models,including convolutional neural network and visual Transformer model,and the results show that our model outperforms others in the above evaluation metrics.In conclusion,the proposed model provides a promising approach for diagnosing CHD using echocardiogram.

关 键 词:Computer-aided diagnosis(CAD) TRANSFORMER coronary heart disease feedback self-attention mechanism 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象