弹簧边界条件下双参数地基上水平输流管道稳定性分析  

Stability of fluid conveying pipe on the two-parameter foundations with elastic support boundary conditions

在线阅读下载全文

作  者:马永奇 李继拓 吴晓冬 沈义俊 尤云祥[4] 冯爱春[4] MA Yongqi;LI Jituo;WU Xiaodong;SHEN Yijun;YOU Yunxiang;FENG Aichun(School of Marine Science and Engineering,Hainan University,Haikou 570228,China;School of Cybersecurity,Hainan University,Haikou 570228,China;CNPC Offshore Engineering Co.Ltd.,Beijing 100028,China;Sanya Yazhou Bay Deep-Sea Science and Technology Research Institute,Shanghai Jiao Tong University,Sanya 572000,China)

机构地区:[1]海南大学海洋科学与工程学院,海南海口570228 [2]海南大学网络空间安全学院,海南海口570228 [3]中国石油集团海洋工程有限公司,北京100028 [4]上海交通大学三亚崖州湾深海科技研究院,海南三亚572000

出  处:《海南大学学报(自然科学版中英文)》2025年第1期50-58,共9页Natural Science of Hainan University

基  金:国家自然科学基金项目(52231012)。

摘  要:研究了双参数地基下输流管道在弹簧支承边界条件下的振动稳定性。基于欧拉-伯努利梁理论,采用哈密顿原理建立输流管道动力学方程,考虑两端弹簧支承边界条件,通过改变弹簧刚度大小,可以简化成多种边界条件。利用调和微分求积(HDQ)方法对振动方程进行离散化求解计算,分析了水平输流管道不同弹簧刚度、双参数地基参数、流体质量比对管道临界速度、临界频率和模态振型的规律。研究结果表明:弹性地基可以有效地提高管道振动的稳定性。此外,弹簧支承和地基对管道的振动模态有显著影响。In the report,the vibration stability of fluid conveying pipe under two-parameter foundations with elastic support boundary conditions was investigated.Based on the Euler-Bernoulli beam theory,the Hamiltonian principle was used to establish the dynamic equations of the pipe.The change of spring stiffness simplified the elastic support boundary conditions at both ends into various boundary conditions.The harmonic differential quadrature(HDQ)method was used to discrete and solve the vibration equations.The effects of the different spring stiffnesses,two parameter foundation parameters,and the fluid mass ratios on the critical velocity,critical frequency,and modal shape of the pipe were analyzed.The results indicated that the elastic foundation could effectively improve the stability of pipeline vibration. Additionally, the spring support andfoundation had a significant effect on the vibration modes of the pipe.

关 键 词:弹性支承 输流管道 哈密顿原理 临界速度 

分 类 号:O321[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象