检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙逸秋 周冬明[1] 王长城 SUN Yi-qiu;ZHOU Dong-ming;WANG Chang-cheng(School of Information Science and Engineering,Yunnan University,Kunming 650000,China)
出 处:《计算机工程与设计》2025年第4期959-965,共7页Computer Engineering and Design
基 金:国家自然科学基金项目(62066047,61966037)。
摘 要:为解决目前基于Transformer的目标跟踪算法采用单一注意力机制,难以有效区分背景和目标的优先级,以及全局注意力操作导致计算负担过重的问题,提出一种基于双层路由注意力的目标跟踪算法。双层路由注意力特征融合模块将单一注意力分为两个层次,上层对图像的区域特征进行相似度筛选,下层对筛选出的区域进行注意力计算。所提算法在LaSOT、GOT-10K、OTB100多个数据集上进行对比实验,实验结果表明,所提算法跟踪表现优良,性能优于现有的多个跟踪器。To address the difficulty of effectively differentiating between background and target priority using the current Transformer-based target tracking algorithm employing a single attention mechanism,as well as the computational burden caused by global attention operation,a target-tracking method based on bi-level routing attention was proposed.A bi-level routing attention feature fusion module that divided a single attention into two layers was introduced.In the upper layer,the region features of the image were initially screened for similarity,while the attention computation was performed on these screened regions in the lower layer.Comparative experiments were conducted on multiple datasets including LaSOT,GOT-10K,and OTB100 to evaluate the proposed algorithm.Experimental results demonstrate its superior performances compared to that of several existing trackers in terms of tracking accuracy.
关 键 词:深度学习 特征融合 目标跟踪 模板更新 注意力机制 多尺度结构 单流框架
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7