检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张永红 Zhang Yong-hong(AVIC Power Co.,Ltd.,Shaanxi Xi'an 710021)
机构地区:[1]中国航发动力股份有限公司,陕西西安710021
出 处:《内燃机与配件》2025年第6期92-94,共3页Internal Combustion Engine & Parts
摘 要:数字化制造作为现代制造业的重要发展方向,强调以数据为核心,通过高精度数据采集与智能决策支持推动制造业转型升级。机器视觉技术作为其中的关键组成部分,能够实现对物体特征的自动识别与理解。通过概述数字化制造与机器视觉技术的基本原理,构建一套面向数字化制造的零件表面缺陷视觉检测系统,以及阐述系统的硬件组件、软件模块划分及功能实现。在此基础上,探索零件表面缺陷视觉检测的关键技术,通过优化光源与照明策略、抑制图像噪声并增强缺陷特征、有效分离前景与背景、选择并描述缺陷特征,以及制定动态阈值分割策略并辅助以形态学操作,实现零件表面缺陷的快速、精准检测,提高生产效率与产品质量,为数字化制造提供有力的技术支持。Digital manufacturing,as a significant development direction in modern manufacturing,emphasizes data as the core,driving the transformation and upgrading of the manufacturing industry through high-precision data acquisition and intelligent decision support.Machine vision technology,a key component thereof,enables automatic recognition and understanding of object features.This paper outlines the basic principles of digital manufacturing and machine vision technology,constructs a vision-based inspection system for surface defects of parts tailored for digital manufacturing,and elaborates on the hardware components,software module division,and function realization of the system.On this basis,it explores the key technologies of vision-based inspection for surface defects of parts,including optimizing light sources and illumination strategies,suppressing image noise and enhancing defect features,effectively separating foreground and background,selecting and describing defect features,and developing dynamic threshold segmentation strategies supplemented by morphological operations.These efforts aim to achieve rapid and precise detection of surface defects on parts,thereby improving production efficiency and product quality,and providing robust technical support for digital manufacturing.
关 键 词:数字化制造 机器视觉 零件表面缺陷 视觉检测技术 图像采集与处理 特征提取
分 类 号:V23[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49