机构地区:[1]武汉市第三医院/武汉大学附属同仁医院放射科,湖北武汉430063
出 处:《实用放射学杂志》2025年第3期457-461,共5页Journal of Practical Radiology
基 金:武汉市科技局知识创新专项项目曙光计划项目(2023020201020544)。
摘 要:目的 探讨基于CT影像学征象的列线图对骨岛(BI)和成骨性转移瘤(OBM)的鉴别诊断价值.方法 回顾性分析374例行胸、腹部CT检查的脊柱BI和OBM患者的临床及影像学资料.BI组患者290例,病灶445个,OBM组患者84例,病灶449个.采用多因素logistic回归方法筛选相关变量,包括年龄、性别,每个病灶的最大CT值、平均CT值、长径、短径、密度均匀性、边缘、位置等,并建立列线图预测模型.采用受试者工作特征(ROC)曲线及曲线下面积(AUC)评估模型对BI和OBM的鉴别效能.结果 单因素分析发现,2组间年龄、最大CT值、平均CT值、棘突征、是否临近骨皮质、是否位于椎体、长径、长径/短径比值差异均有统计学意义(P<0.05).多因素logistic回归结果分析表明,平均CT值、棘突征、是否临近骨皮质、是否位于椎体、长径、长径/短径比值是BI和OBM鉴别的独立因素(P<0.05).以平均CT值、棘突征、是否临近骨皮质、是否位于椎体、长径、长径/短径比值构建列线图模型鉴别BI和OBM的训练集和验证集ROC曲线的AUC分别为0.976、0.935,该模型训练集的敏感度、特异度分别为0.942、0.902,验证集的敏感度、特异度分别为0.932、0.799.结论 基于平均CT值、棘突征、是否临近骨皮质、是否位于椎体、长径、长径/短径比值构建列线图模型可以很好地鉴别BI和OBM,为临床决策提供有效的帮助.Objective To investigate the differential diagnostic value of nomogram based on CT imaging features for bone island(BI)and osteoblastic metastases(OBM).Methods A retrospective analysis was conducted on the clinical and imaging data of 374 patients with spinal BI and OBM who underwent chest or abdominal CT scans.There were 290 patients with 445 lesions in BI group,and 84 patients with 449 lesions in OBM group.Multivariate logistic regression analysis was used to screen relevant variables,including age,gender,maximum CT value,average CT value,length and width,density uniformity,margin,and location of each lesion,to establish a nomogram prediction model.The receiver operating characteristic(ROC)curve and area under the curve(AUC)were used to evaluate the differential diagnostic performance of the nomogram model for BI and OBM.Results Univariate analysis revealed that statistically significant differences between the two groups in terms of age,maximum CT value,average CT value,spinous process sign,proximity to the bone cortex,vertebral location,length,and length/width ratio(P<0.05).Multivariate logistic regression analysis showed that average CT value,spinous process sign,proximity to the bone cortex,vertebral location,length,and length/width ratio were independent factors differentiating for BI and OBM(P<0.05).The AUC of ROC curves for the training and validation sets of the nomogram model,constructed based on average CT value,spinous process sign,proximity to the bone cortex,vertebral location,length,and length/width ratio,were 0.976 and 0.935,respectively.The sensitivity and specificity of the model’s training set were 0.942 and 0.902,respectively,while those of the validation set were 0.932 and 0.799,respectively.Conclusion The nomogram model based on average CT value,spinous process sign,proximity to the bone cortex,vertebral location,length,and length/width ratio can effectively differentiate BI from OBM,providing valuable assistance for clinical decision-making.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...