检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jahanzaib Latif Ahsan Wajahat Alishba Tahir Anas Bilal Mohammed Zakariah Abeer Alnuaim
机构地区:[1]School of Software,Northwestern Polytechnical University,Xi’an,710072,China [2]Shifa College of Medicine,Shifa Tameer-e-millat University,Islamabad,44000,Pakistan [3]College of Information Science and Technology,Hainan Normal University,Haikou,571158,China [4]Department of Computer Science and Engineering,College of Applied Studies and Community Service,King Saud University,Riyadh,11495,Saudi Arabia
出 处:《Computer Modeling in Engineering & Sciences》2025年第4期539-567,共29页工程与科学中的计算机建模(英文)
基 金:Researchers Supporting Project number(RSP2025R314),King Saud University,Riyadh,Saudi Arabia.
摘 要:Glaucoma,a leading cause of blindness,demands early detection for effective management.While AI-based diagnostic systems are gaining traction,their performance is often limited by challenges such as varying image backgrounds,pixel intensity inconsistencies,and object size variations.To address these limitations,we introduce an innovative,nature-inspired machine learning framework combining feature excitation-based dense segmentation networks(FEDS-Net)and an enhanced gray wolf optimization-supported support vectormachine(IGWO-SVM).This dual-stage approach begins with FEDS-Net,which utilizes a fuzzy integral(FI)technique to accurately segment the optic cup(OC)and optic disk(OD)from retinal images,even in the presence of uncertainty and imprecision.In the second stage,the IGWO-SVM model optimizes the SVM classification process,leveraging a gray wolf-inspired optimization strategy to fine-tune the kernel function for superior accuracy.Extensive testing on three benchmark glaucoma image databases DRIONS-DB,Drishti-GS,and Rim-One-r3 demonstrates the efficacy of our method,achieving classification accuracies of 97.65%,94.88%,and 93.2%,respectively.These results surpass existing state-of-the-art techniques,offering a promising solution for reliable and early glaucoma detection.
关 键 词:GLAUCOMA fundus images machine learning nature-inspired algorithm SEGMENTATION classification
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7