Enhanced Particle Swarm Optimization Algorithm Based on SVM Classifier for Feature Selection  

在线阅读下载全文

作  者:Xing Wang Huazhen Liu Abdelazim G.Hussien Gang Hu Li Zhang 

机构地区:[1]School of Science,Xi’an University of Technology,Xi’an,710054,China [2]Department of Computer and Information Science,Linkoping University,Linkoping,58183,Sweden [3]School of Science,Chang’an University,Xi’an,710064,China

出  处:《Computer Modeling in Engineering & Sciences》2025年第3期2791-2839,共49页工程与科学中的计算机建模(英文)

基  金:supported by the Fundamental Research Funds for the Central Universities of China(No.300102122105);the Natural Science Basic Research Plan in Shaanxi Province of China(2023-JC-YB-023).

摘  要:Feature selection(FS)is essential in machine learning(ML)and data mapping by its ability to preprocess high-dimensional data.By selecting a subset of relevant features,feature selection cuts down on the dimension of the data.It excludes irrelevant or surplus features,thus boosting the performance and efficiency of the model.Particle Swarm Optimization(PSO)boasts a streamlined algorithmic framework and exhibits rapid convergence traits.Compared with other algorithms,it incurs reduced computational expenses when tackling high-dimensional datasets.However,PSO faces challenges like inadequate convergence precision.Therefore,regarding FS problems,this paper presents a binary version enhanced PSO based on the Support Vector Machines(SVM)classifier.First,the Sand Cat Swarm Optimization(SCSO)is added to enhance the global search capability of PSO and improve the accuracy of the solution.Secondly,the Latin hypercube sampling strategy initializes populations more uniformly and helps to increase population diversity.The last is the roundup search strategy introducing the grey wolf hierarchy idea to help improve convergence speed.To verify the capability of Self-adaptive Cooperative Particle Swarm Optimization(SCPSO),the CEC2020 test suite and CEC2022 test suite are selected for experiments and applied to three engineering problems.Compared with the standard PSO algorithm,SCPSO converges faster,and the convergence accuracy is significantly improved.Moreover,SCPSO’s comprehensive performance far exceeds that of other algorithms.Six datasets from the University of California,Irvine(UCI)database were selected to evaluate SCPSO’s effectiveness in solving feature selection problems.The results indicate that SCPSO has significant potential for addressing these problems.

关 键 词:Feature selection SVM particle swarm optimization sand cat swarm optimization engineering problems 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象