检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵真 ZHAO Zhen(School of Automation,Qingdao University,Qingdao 266000,China)
出 处:《自动化与仪表》2025年第4期109-112,117,共5页Automation & Instrumentation
摘 要:为了提升采摘机器人采摘番茄果实的识别准确率,减少误判和漏检的情况,该文提出一种基于YOLOv5s的番茄检测改进模型,首先将CA注意力机制加入到YOLOv5s模型的特征提取环节,为了进一步提高模型的泛化能力,实现多尺度特征融合,引入了BiFPN结构替换原有的PANet结构,同时结合损失函数IoU进一步优化模型的训练过程,从而提高检测精度。经过试验验证,提出的模型在番茄果实检测任务中获得了显著成果。相比YOLOv5s模型,改进后的模型准确率、召回率、F1分数和平均精度分别上升2.2%、2.1%、2.2%和1.3%。改进后的模型可以应用于番茄采摘机器人,并可以对成熟番茄与未成熟番茄进行分类,与原YOLOv5s算法相比,有效提升了检测的精度。In order to improve the recognition accuracy of tomato fruit picking robots and reduce misjudgments and missed detections,this paper proposes an improved tomato detection model based on YOLOv5s.Firstly,the CA attention mechanism is added to the feature extraction stage of the YOLOv5s model.In order to further improve the generalization ability of the model and achieve multi-scale feature fusion,the BiFPN structure is introduced to replace the original PANet structure,and the training process of the model is further optimized by combining the loss function IoU,thereby improving the detection accuracy.After experimental verification,the proposed model has achieved significant results in tomato fruit detection tasks.Compared to the YOLOv5s model,the improved model has increased accuracy,recall,F1 score,and average precision by 2.2%,2.1%,2.2%and 1.3%,respectively.The improved model can be applied to tomato harvesting robots and can classify mature and immature tomatoes.Compared with the original YOLOv5s algorithm,it effectively improves the detection accuracy.
关 键 词:YOLOv5s 注意力机制 采摘机器人 BiFPN 目标检测
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49