xCViT:Improved Vision Transformer Network with Fusion of CNN and Xception for Skin Disease Recognition with Explainable AI  

在线阅读下载全文

作  者:Armughan Ali Hooria Shahbaz Robertas Damaševicius 

机构地区:[1]Department of Electrical Engineering,Wah Engineering College,University of Wah,Wah Cantt,47040,Pakistan [2]Department of Computer Science,HITEC University,Taxila,47080,Pakistan [3]Department of Applied Informatics,Vytautas Magnus University,Kaunas,44309,Lithuania

出  处:《Computers, Materials & Continua》2025年第4期1367-1398,共32页计算机、材料和连续体(英文)

摘  要:Skin cancer is the most prevalent cancer globally,primarily due to extensive exposure to Ultraviolet(UV)radiation.Early identification of skin cancer enhances the likelihood of effective treatment,as delays may lead to severe tumor advancement.This study proposes a novel hybrid deep learning strategy to address the complex issue of skin cancer diagnosis,with an architecture that integrates a Vision Transformer,a bespoke convolutional neural network(CNN),and an Xception module.They were evaluated using two benchmark datasets,HAM10000 and Skin Cancer ISIC.On the HAM10000,the model achieves a precision of 95.46%,an accuracy of 96.74%,a recall of 96.27%,specificity of 96.00%and an F1-Score of 95.86%.It obtains an accuracy of 93.19%,a precision of 93.25%,a recall of 92.80%,a specificity of 92.89%and an F1-Score of 93.19%on the Skin Cancer ISIC dataset.The findings demonstrate that the model that was proposed is robust and trustworthy when it comes to the classification of skin lesions.In addition,the utilization of Explainable AI techniques,such as Grad-CAM visualizations,assists in highlighting the most significant lesion areas that have an impact on the decisions that are made by the model.

关 键 词:Skin lesions vision transformer CNN Xception deep learning network fusion explainable AI Grad-CAM skin cancer detection 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象