基于状态估计的电力调度流数据异常识别方法研究  

Research on Anomaly Identification Method of Power Dispatching Flow Data Based on State Estimation

在线阅读下载全文

作  者:赵莹 路学刚 曹文刚 何文洪 ZHAO Ying;LU Xuegang;CAO Wengang;HE Wenhong(Yunnan Power Grid Co.,Ltd.,Kunming 650011,China;Yunnan Yundian Tongfang Technology Co.,Ltd.,Kunming 650011,China)

机构地区:[1]云南电网有限责任公司,云南,昆明650011 [2]云南云电同方科技有限公司,云南,昆明650011

出  处:《微型电脑应用》2025年第2期182-185,190,共5页Microcomputer Applications

摘  要:针对现有电力调度流数据存在的数据异常识别精度低等问题,设计一种新的基于状态估计的电力调度流数据异常识别方法。根据电力调度过程中电力系统各个节点的电压、电流相量变化,引入混合测量算法设计电力调度流数据状态估计算法,估计电力调度流数据状态;利用电力调度流数据线性关系和Copula理论,定义电力调度流数据异常分值,求取电力调度流数据条件概率累积分布函数和样本线性范围,得到电力调度流数据异常分值,实现电力调度流数据异常识别。通过设置实例电网和参数,设计实验分析,结果证明本文设计方法识别电力调度流数据异常错误识别数为0,不受方法样本层节点数影响,具有较高的识别精度。Aimed at the problem of low accuracy of data anomaly identification in existing power dispatching flow data,an anomaly identification method of power dispatching flow data based on state estimation is proposed.According to the changes of voltage and current phasor at each node of power system in the process of power dispatching,a hybrid measurement algorithm is introduced to design the power dispatching flow data state estimation algorithm to estimate the power dispatching flow data state.Using the linear relationship of power dispatching flow data and copula theory,the abnormal score of power dispatching flow data is defined,the conditional probability cumulative distribution function and sample linear range of power dispatching flow data are obtained,the abnormal score of power dispatching flow data is obtained,and the abnormal identification of power dispatching flow data is realized.By setting the example power grid and parameters,the experimental analysis is designed.Results show that the design method proposed identifies the abnormal data of power dispatching flow,the number of error identification is 0,which is not affected by the number of nodes in the method sample layer,and has high identification accuracy.

关 键 词:状态估计 电力调度 调度流数据 数据异常 异常识别 

分 类 号:TM721[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象