检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wei-Qing Lin Xi-Ren Miao Jing Chen Ming-Xin Ye Yong Xu Hao Jiang Yan-Zhen Lu
机构地区:[1]College of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350108,China [2]Fujian Fuqing Nuclear Power Company Limited,Fuqing 350300,China [3]Fuzhou Power Supply Company,State Grid Fujian Electrical Power Company Limited,Fuzhou 350009,China
出 处:《Nuclear Science and Techniques》2025年第5期177-191,共15页核技术(英文)
基 金:supported by the Industry-University Cooperation Project in Fujian Province University(No.2023H6006);the State Key Laboratory of Reliability and Intelligence of Electrical Equipment(No.EERI-KF20200005)。
摘 要:Artificial intelligence has potential for forecasting reactor conditions in the nuclear industry.Owing to economic and security concerns,a common method is to train data generated by simulators.However,achieving a satisfactory performance in practical applications is difficult because simulators imperfectly emulate reality.To bridge this gap,we propose a novel framework called simulation-to-reality domain adaptation(SRDA)for forecasting the operating parameters of nuclear reactors.The SRDA model employs a transformer-based feature extractor to capture dynamic characteristics and temporal dependencies.A parameter predictor with an improved logarithmic loss function is specifically designed to adapt to varying reactor powers.To fuse prior reactor knowledge from simulations with reality,the domain discriminator utilizes an adversarial strategy to ensure the learning of deep domain-invariant features,and the multiple kernel maximum mean discrepancy minimizes their discrepancies.Experiments on neutron fluxes and temperatures from a pressurized water reactor illustrate that the SRDA model surpasses various advanced methods in terms of predictive performance.This study is the first to use domain adaptation for real-world reactor prediction and presents a feasible solution for enhancing the transferability and generalizability of simulated data.
关 键 词:Nuclear power plant(NPP) Pressurized water reactor(PWR) Domain adaptation Knowledge transfer TRANSFORMER Forecasting
分 类 号:TL33[核科学技术—核技术及应用]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7