Simulation-to-reality transferability framework for operating-parameter forecasting in nuclear reactors using domain adaptation  

在线阅读下载全文

作  者:Wei-Qing Lin Xi-Ren Miao Jing Chen Ming-Xin Ye Yong Xu Hao Jiang Yan-Zhen Lu 

机构地区:[1]College of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350108,China [2]Fujian Fuqing Nuclear Power Company Limited,Fuqing 350300,China [3]Fuzhou Power Supply Company,State Grid Fujian Electrical Power Company Limited,Fuzhou 350009,China

出  处:《Nuclear Science and Techniques》2025年第5期177-191,共15页核技术(英文)

基  金:supported by the Industry-University Cooperation Project in Fujian Province University(No.2023H6006);the State Key Laboratory of Reliability and Intelligence of Electrical Equipment(No.EERI-KF20200005)。

摘  要:Artificial intelligence has potential for forecasting reactor conditions in the nuclear industry.Owing to economic and security concerns,a common method is to train data generated by simulators.However,achieving a satisfactory performance in practical applications is difficult because simulators imperfectly emulate reality.To bridge this gap,we propose a novel framework called simulation-to-reality domain adaptation(SRDA)for forecasting the operating parameters of nuclear reactors.The SRDA model employs a transformer-based feature extractor to capture dynamic characteristics and temporal dependencies.A parameter predictor with an improved logarithmic loss function is specifically designed to adapt to varying reactor powers.To fuse prior reactor knowledge from simulations with reality,the domain discriminator utilizes an adversarial strategy to ensure the learning of deep domain-invariant features,and the multiple kernel maximum mean discrepancy minimizes their discrepancies.Experiments on neutron fluxes and temperatures from a pressurized water reactor illustrate that the SRDA model surpasses various advanced methods in terms of predictive performance.This study is the first to use domain adaptation for real-world reactor prediction and presents a feasible solution for enhancing the transferability and generalizability of simulated data.

关 键 词:Nuclear power plant(NPP) Pressurized water reactor(PWR) Domain adaptation Knowledge transfer TRANSFORMER Forecasting 

分 类 号:TL33[核科学技术—核技术及应用]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象