检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕琪 彭凤婷 黄俊曦 谭科峰 郑慧娟[1] Lv Qi;Peng Fengting;Huang Junxi;Tan Kefeng;Zheng Huijuan
机构地区:[1]广东财经大学,广州510320
出 处:《中国资产评估》2025年第3期70-80,共11页Appraisal Journal of China
基 金:广东省哲学社会科学规划项目“基于系统动力学的数据资产价值分配机制研究”(GD23XLJ02)资助。
摘 要:本文探讨了在金融大模型广泛应用和科创板上市公司并购活跃的背景下,金融大模型在企业价值评估中的主要应用领域,重点介绍了金融大模型在市场法评估中可比企业选择中的具体应用方法,包括确定筛选标准、设置提示问题、获取详细信息、分析企业发展趋势等环节以及可设置的提示问题,并通过案例展示了应用过程。金融大模型在提升评估效率、减少主观性和实现个性化定制方面具有显著优势,但使用时应注意数据质量、模型训练的效果,合规性风险等。建议评估师谨慎选择、合理使用金融大模型并综合运用专业判断和其他量化分析方法,同时,评估行业与监管方应建立与完善评估技术和准则。This article explores the primary application domains of financial big models in enterprise value assessment in the context of the extensive application of financial big models and the vigorous mergers and acquisitions among listed companies on the Shanghai Science and Technology Innovation Board.It highlights the specific application approaches of financial big models in the selection of comparable enterprises in market-based assessment,encompassing such steps as determining screening criteria,setting prompt questions,obtaining detailed information,analyzing enterprise development trends,and the prompt questions that can be established.Moreover,the application process is demonstrated through a case.Financial big models possess remarkable advantages in enhancing assessment efficiency,reducing subjectivity,and achieving personalized customization.However,when utilized,attention should be paid to issues such as data quality,the efficacy of model training,compliance risks,etc.It is suggested that assessors select and employ financial big models with caution and integrate professional judgment and other quantitative analysis methods.Simultaneously,the assessment industry and regulatory authorities should establish and refine assessment technologies and standards.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7