人工智能背景下轻化工产业英语生态化翻译模式研究  

Research on the Ecological Translation Model of English in the Light Chemical Industry Under the Background of Artificial Intelligence

在线阅读下载全文

作  者:杨宁[1] 王璐 YANG Ning;WANG Lu(Xi’an Fanyi University,Xi’an 710105,China)

机构地区:[1]西安翻译学院,陕西西安710105

出  处:《造纸科学与技术》2025年第4期165-168,共4页Paper Science And Technology

基  金:西安翻译学院2024年度校级品牌课程项目(ZK2417);陕西省“十四五”教育科学规划2024年度课题(SGH24Y2408);西安市2023年社会科学规划基金项目(23JY63)。

摘  要:在全球经济一体化与人工智能技术深度融合的背景下,轻化工产业作为我国传统优势行业,正加速推进国际化进程。产业技术标准的跨境对接、设备进出口文档的专业化翻译、跨国技术协作的精准沟通,都对既掌握轻化工专业知识又精通英语翻译的复合型人才提出了迫切需求。为此,对于高校轻化工专业英语,需要将人才培养目标设定为:语言技能熟练、语言功底深厚、专业知识扎实。基于人工智能角度,对该专业的英语生态化翻译教学问题进行分析,进而从教学内容、方法、目标层面,对该产业翻译教学提出相应的应对方法与策略。Against the backdrop of the deep integration of global economic integration and artificial intelligence technology,the light chemical industry,as a traditional advantageous sector in China,is accelerating its internationalization process.The cross-border connection of industrial technology standards,the professional translation of equipment import and export documents,and the precise communication of cross-border technical collaboration have all put forward an urgent demand for compound talents who not only master the professional knowledge of light chemical industry but also are proficient in English translation.Therefore,for the English major of light chemical engineering in colleges and universities,the talent cultivation goal should be set as:proficient language skills,profound language foundation,and solid professional knowledge.From the perspective of artificial intelligence,this paper analyzes the teaching issues of ecological English translation in this major,and then proposes corresponding countermeasures and strategies for translation teaching in this industry from the levels of teaching content,methods and goals.

关 键 词:人工智能 轻化工产业 生态化翻译 创新 

分 类 号:TS71[轻工技术与工程—制浆造纸工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象