基于PSO算法优化BP神经网络的PM_(2.5)浓度预测模型  

PM_(2.5)Concentration Prediction Model Based on PSO Algorithm Optimized BP Neural Network

在线阅读下载全文

作  者:李佳林 侯利明 张聪 LI Jialin;HOU Liming;ZHANG Cong(Sichuan Vocational College of Health and Rehabilitation,Zigong 643000,China;Xinxiang Medical University,Xinxiang 453003,China)

机构地区:[1]四川卫生康复职业学院,四川自贡643000 [2]新乡医学院,河南新乡453003

出  处:《现代信息科技》2025年第7期47-51,57,共6页Modern Information Technology

基  金:四川卫生康复职业学院重点课题(CWKY-2019Z-02);四川卫生康复职业学院校级科研团队(CWKY-TD24-10)。

摘  要:针对传统的BP神经网络收敛速度较慢且易陷入局部最优解的问题,文章提出了一种基于粒子群优化(PSO)算法优化BP神经网络的PM_(2.5)浓度预测模型,从而能够快速收敛并得到全局最优解。首先,通过皮尔逊相关性分析筛选出与PM_(2.5)浓度相关性较高的污染物指标作为输入变量。其次,利用PSO算法优化BP神经网络的初始权重和阈值,克服了BP神经网络易陷入局部最优、收敛速度慢的缺点。最后,利用成都市2021年7月至2024年6月的大气污染物数据对模型进行训练和测试。结果表明,测试集的R^(2)达到0.944,测试集的MAE为4.231,测试集的RMSE为6.364。与未优化的BP神经网络模型相比,PSO-BP模型具有更高的预测精度和更快的收敛速度,能够有效地预测成都市次日的PM_(2.5)浓度。Aiming at the problem that the traditional BP Neural Network has slow convergence speed and is easy to fall into local optimal solution,this paper proposes a PM_(2.5)concentration prediction model based on Particle Swarm Optimization(PSO)algorithm optimized BP Neural Network,which can quickly converge and get the global optimal solution.Firstly,the pollutant indexes with high correlation with PM_(2.5)concentration are selected as input variables by Pearson correlation analysis.Secondly,the PSO algorithm is used to optimize the initial weights and thresholds of BP Neural Network,which overcomes the shortcomings of BP Neural Network,such as easy to fall into local optimum and slow convergence speed.Finally,the model is trained and tested using air pollutant data from July 2021 to June 2024 in Chengdu.The results show that the R^(2)of the test set is 0.944,the MAE of the test set is 4.231,and the RMSE of the test set is 6.364.Compared with the unoptimized BP Neural Network model,the PSO-BP model has higher prediction accuracy and faster convergence speed,and can effectively predict the PM_(2.5)concentration of the next day in Chengdu.

关 键 词:PM_(2.5)浓度 预测模型 PSO算法 BP神经网络 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术] TP183[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象