检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王昱 马春荣 赵明月 WANG Yu;MA Chunrong;ZHAO Mingyue(College of Automation,Shenyang Aerospace University,Shenyang 110136,China;Aerospace Shenzhou Aerial Vehicle Ltd.,Tianjin 300450,China)
机构地区:[1]沈阳航空航天大学自动化学院,辽宁沈阳110136 [2]航天神舟飞行器有限公司,天津300450
出 处:《浙江大学学报(工学版)》2025年第4期821-831,共11页Journal of Zhejiang University:Engineering Science
基 金:国家自然科学基金资助项目(61906125,62373261);辽宁省高校基本科研业务费项目(LJ232410143020,LJ212410143047).
摘 要:针对多约束条件下的异构无人机协同多任务分配问题,构建综合考虑航程代价、时间代价、作战效能和多个约束的三目标优化模型,提出基于混合策略的多目标粒子群优化算法.为了评价任务打击效率同时考虑死锁难题,在建模过程中提出弹药平均作用效能指标和等待时间计算.为了解决传统粒子群算法易陷入局部最优的问题,确保始终搜索到满足约束的可行解,分别提出基于约束的粒子动态优选初始化策略、基于支配关系的优势个体选择策略和基于任务的小模块粒子更新及修正策略,有效提升算法在收敛精度及多样性方面的综合性能.通过多场景下的仿真、消融实验验证模型及算法的有效性.结果表明,相较对比算法,所提算法得到的解集更收敛、多样,分布更均匀,能够高效实现异构无人机的协同多任务分配.Aiming at the problem of collaborative multi-task assignment of heterogeneous UAVs under multiple constraints,a three-objective optimization model was constructed,which considered the UAV flight distance cost,time cost,combat effectiveness and multiple constraints.A multi-objective particle swarm optimization algorithm based on hybrid strategies was proposed to solve the model.An average action efficiency index of ammunition was proposed to evaluate the task strike efficiency,and considering the possibility of deadlock during task execution,a calculation of waiting time was proposed in the process of modeling.In order to solve the problem that traditional particle swarm optimization falls into local optimality,and ensure that feasible solutions satisfying constraints are searched,a constraint-based particle dynamic optimal initialization strategy,a dominance relationship-based advantageous individual selection strategy,and a task-based small module particle update and correction strategy were proposed,respectively.The overall performance of the algorithm in terms of convergence accuracy and diversity was effectively improved by these strategies.The validity of the model and the algorithm was verified through multi-scenario simulation experiments and ablation experiments.Results show that the solution sets obtained by the proposed algorithm are more convergent,diverse and evenly distributed than the comparative algorithms,and the collaborative multi-task assignment of heterogeneous UAVs is efficiently realized by the proposed algorithm.
关 键 词:异构无人机 任务分配 多目标优化 粒子群 混合策略
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49