检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖志强 黄振德 宋雪玮 梁观龙 贾宝柱 LIAO Zhiqiang;HUANG Zhende;SONG Xuewei;LIANG Guanlong;JIA Baozhu(Naval Architecture and Shipping College,Guangdong Ocean University,Zhanjiang 524088,China;Technical Research Center for Ship Intelligence and Safety Engineering of Guangdong Province,Zhanjiang 524088,China;Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching,Zhanjiang 524088,China)
机构地区:[1]广东海洋大学船舶与海运学院,广东湛江524088 [2]广东省船舶智能与安全工程技术研究中心,广东湛江524088 [3]省市共建南海海洋牧场智能装备广东省重点实验室,广东湛江524088
出 处:《中国舰船研究》2025年第2期56-67,共12页Chinese Journal of Ship Research
基 金:国家自然科学基金资助项目(52201355,52071090,52401418);广东省教育厅重点领域资金项目(2020ZDZX3063);广东海洋大学科研启动经费资助项目(060302132304,060302132101)。
摘 要:[目的]针对船舶水泵轴承故障时的振动信号故障特征易被噪声淹没,导致诊断准确率较低的问题,提出一种基于巴特沃斯均值滤波器和马尔可夫转移场(BM-MTF)与ResNet-18网络相结合的轴承故障特征增强与诊断方法。[方法]首先,引入BM滤波器,以强化信号的故障冲击波形,从而抑制噪声干扰、增强故障特征;然后,通过MTF绘制二维图像,以有效可视化并增强信号特征,再将经BM信号滤波后的MTF图像输入ResNet-18网络进行诊断识别;最后,采用西储大学轴承故障公开数据集、实验室轴承故障数据集和船舶水泵轴承故障数据集进行对比验证。[结果]实验对比结果表明,所提BM-MTF方法可以有效提取轴承故障特征,其对3种轴承故障数据集的诊断准确度均达到100%,显著提升了轴承故障准确度。[结论]研究成果可为船舶水泵轴承故障诊断提供参考。[Objective]Marine water pump bearings operate in complex environments,and the fault features in the acquired signals are easily submerged by noise,resulting in low fault diagnosis accuracy.This paper proposes a Butterworth mean filtering Markov transition field(BM-MTF)technique combined with the Res-Net-18 network to solve the problem.[Methods]First,the BM filter is employed to improve the fault impulse waveform of the signal,suppressing noise interference and amplifying fault characteristics.Then,a twodimensional image is generated through MTF to effectively visualize and enhance the signal characteristics.The MTF images,after BM filtering,are input into the ResNet-18 network for fault diagnosis.Finally,the method is verified using the public bearing fault dataset from Case Western Reserve University,the laboratory bearing fault dataset,and marine water pump bearing fault dataset,with comparisons to other methods.[Results]The proposed method demonstrates a 100% accuracy on three bearing fault datasets.The comparative experiments show that the proposed method can effectively extract fault features and achieves higher recognition accuracy.[Conclusion]This paper presents a novel method for fault diagnosis of marine water pump bearings.
关 键 词:船舶水泵 轴承 故障分析 特征提取 故障特征增强 马尔可夫转移场 ResNet-18网络
分 类 号:U672.74[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49