检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周羽 黄亮[2] 周春辉[1] 文元桥[3] 黄亚敏[4] 汪嘉慈 ZHOU Yu;HUANG Liang;ZHOU Chunhui;WEN Yuanqiao;HUANG Yamin;WANG Jiaci(School of Navigation,Wuhan University of Technology,Wuhan 430063,China;Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063,China;State Key Laboratory of Maritime Technology and Safety,Wuhan University of Technology,Wuhan 430063,China;National Engineering Research Center for Water Transport Safety,Wuhan University of Technology,Wuhan 430063,China;Sanya Science and Education Innovation Park,Wuhan University of Technology,Sanya 572025,China)
机构地区:[1]武汉理工大学航运学院,湖北武汉430063 [2]武汉理工大学智能交通系统研究中心,湖北武汉430063 [3]武汉理工大学水路交通控制全国重点实验室,湖北武汉430063 [4]武汉理工大学国家水运安全工程技术研究中心,湖北武汉430063 [5]武汉理工大学三亚科教创新园,海南三亚572025
出 处:《中国舰船研究》2025年第2期366-376,共11页Chinese Journal of Ship Research
基 金:海南省科技计划三亚崖州湾科技城自然科学基金联合项目(2021JJLH0012);海南省自然科学基金项目(624MS079);三亚市科技创新专项(2022KJCX36)。
摘 要:[目的]针对现有船舶行为识别方法在处理大规模海上船舶轨迹数据时存在效率低、准确性差等问题,提出一种基于轨迹特征图像建模与深度学习的船舶行为识别及分类方法,旨在快速、高效识别和分类船舶行为模式。[方法]考虑船舶轨迹多尺度特征,提出船舶轨迹的自适应网格化处理方法,构建航速、加速度、航向、转向率和轨迹点密度等显著特征的视觉编码模型,实现船舶轨迹特征图像的样本生成和增强处理,进而采用卷积神经网络构建船舶行为分类识别模型,对不同船舶行为的轨迹图像样本集进行训练和验证。[结果]实验结果表明,航速、转向率和轨迹点密度是区分直航、转向、机动徘徊、靠泊和锚泊等8种行为的最佳特征组合,基于轨迹特征图像的深度学习模型能显著提高船舶行为识别的质量和精度:召回率为90.99%,精确度为91.23%,F1分数为91.11%,准确率达到91.22%。[结论]该方法可有效识别不同尺度轨迹数据的船舶行为,开展区域船舶行为的自动分类识别,结果可为水上交通智能管控提供决策支撑。[Objective]To address the issues of low efficiency and inaccurate ship behavior recognition when handling large-scale ship trajectory data,this paper proposes a method for recognizing and classifying ship behaviour based on trajectory feature image modelling and deep learning.[Method]A visual coding model is constructed for the salient features,including speed,acceleration,heading,steering rate,and trajectory point density.It also realizes the sample generation and enhancement processing of ship trajectory feature images while taking into account the multi-scale features of ship trajectory.[Results]Based on the trajectory feature images,the deep learning model significantly improves the quality and accuracy of ship behavior recognition,with a recall rate of 90.99%,precision rate of 91.23%,and F1 score of 91.11%,which translates to an accuracy rate of 91.22%.The experimental results indicate that the speed,steering rate,and trajectory point density are the best feature combinations for distinguishing the eight behaviors,such as straight ahead,steering,maneuvering,berthing,and anchoring.[Conclusions]The proposed approach can successfully detect ship behaviors at various trajectory data scales,perform automatic ship behavior categorization and identification,and produce outcomes that may assist in decision-making for intelligent water traffic control.
分 类 号:U675.79[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7