基于业务数据分析的个性化电力信息精准推荐方法设计  

Design of accurate recommendation method for personalized power information based on business data analysis

在线阅读下载全文

作  者:关俊宁 杨蕴琳 凌华明 GUAN Junning;YANG Yunlin;LING Huaming(Zhuhai Power Supply Bureau of Guangdong Power Grid Co.,Ltd.,Zhuhai 519075,Guangdong China)

机构地区:[1]广东电网有限责任公司珠海供电局,广东珠海519075

出  处:《粘接》2025年第5期143-146,共4页Adhesion

基  金:珠海供电局2022年个性化营销管理数字化应用建设项目(项目编号:JY-KF-02-JY-22-009)。

摘  要:针对以往的个性化电力客户服务信息推荐方法的服务推荐成功率不高,设计了基于业务数据分析的个性化电力客户服务信息推荐方法。根据电力客户信息的类型,将其划分为文本数据和场景数据,通过对数据信息间相似度的计算,获取到电力客户数据,并对其进行数据预处理。在业务数据分析的支持下,对上述获取的数据进行特征提取,再筛选出其中有价值的特征数据,进行特征数据的融合,利用融合的特征数据计算电力客户需求的预测函数,结合电力客户的画像,选择合适的电力客户服务推荐方式,进行符合电力客户需求的服务推荐。在实验测试中,和以往的推荐方法相比,设计的基于业务数据分析的个性化电力客户服务信息推荐方法服务推荐成功率高达97.8%。In view of the low success rate of the previous personalized power customer service information recommendation methods,a personalized power customer service information recommendation method based on business data analysis was designed.According to the type of power customer information,it was divided into text data and scene data,and the power customer data was obtained and preprocessed by calculating the similarity between the data information.With the support of business data analysis,the above-mentioned obtained data was extracted by features,and then the valuable feature data was screened out,the characteristic data was fused,the prediction function of power customer demand was calculated by using the fused feature data,and the appropriate power customer service recommendation method was selected in combination with the portrait of power customers,so as to carry out service recommendation that meets the needs of power customers.In the experimental test,compared with the previous recommendation methods,the service recommendation success rate of the personalized power customer service information recommendation method based on business data analysis was as high as 97.8%.

关 键 词:业务数据分析 个性化电力客户 信息推荐 方法设计 

分 类 号:TP391[自动化与计算机技术—计算机应用技术] TM711[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象