检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱华 张晴 徐力刚[3,4] ZHU Hua;ZHANG Qing;XU Li-gang(School of Geomatics and Municipal Engineering,Zhejiang University of Water Resources and Electric Power,Hangzhou 310018,China;Key Laboratory of Poyang Lake Wetland and Watershed Research,Ministry of Education,Jiangxi Normal University,Nanchang 330022,China;Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences,Nanjing 210008,China;Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin,Nanchang 330029,China)
机构地区:[1]浙江水利水电学院测绘与市政工程学院,杭州310018 [2]江西师范大学鄱阳湖湿地与流域研究教育部重点实验室,南昌330022 [3]中国科学院南京地理与湖泊研究所,南京210008 [4]江西省鄱阳湖流域生态水利技术创新中心,南昌330029
出 处:《环境科学》2025年第4期2057-2068,共12页Environmental Science
基 金:浙江省自然科学基金联合基金项目(LZJWY23E090004);国家自然科学基金项目(42307106,U2240224)。
摘 要:厘清水资源生命周期中的“水-能-碳”关联过程和水系统碳排放的变化规律,对于区域水资源管理、能源高效利用和低碳发展具有重要意义.构建了一个基于“水-能-碳”关联的水资源全生命周期碳排放综合分析框架,采用2011~2021年统计数据,对浙江省水系统碳排放量进行核算并分析其动态变化,利用STIRPAT模型对2022~2040年用水系统碳排放进行了情景预测.结果表明:①浙江省水系统碳排放主要呈“上升-下降-上升”趋势,其在2011~2012年和2020~2021年分别增加268.77万t和488.84万t,2012~2020年减少1137.16万t.②浙江省用水系统碳排放量占比高达95%以上,对水系统碳排放总量变化具有决定性影响.③城镇化率是用水系统各环节碳排放量变化的关键驱动因子,而人口则主要影响工业用水和居民生活用水碳排放量.④用水系统碳排放量,在低碳情景和粗放发展情景下分别处于最低水平和最高水平.居民和公共生活用水是未来浙江省水系统碳排放量增长的主要环节.因此,在合理控制人口增长和推进城镇化进程的同时,需要采取综合性的节水减排策略,包括提高用水效率、优化用水结构,以及降低碳排放强度,从而有效促进水系统的碳减排.Clarifying the“water-energy-carbon”nexus process and variation in the carbon emissions of a water system throughout the lifecycle of water resources is crucial for regional water resource management,energy-efficient utilization,and low-carbon development.This study introduces a comprehensive analytical framework for assessing carbon emissions across the entire lifecycle of water resources,grounded in the“water-energy-carbon”nexus.Utilizing statistical data from 2011 to 2021,the research analyzed the dynamic changes in carbon emissions in the water system in Zhejiang.Additionally,the STIRPAT model was employed to forecast carbon emissions from 2022 to 2040.The results showed that:①The carbon emissions of the water system in Zhejiang mainly exhibited an“upward-downward-upward”trend,with an increase of 2.6877 million tons in 2011-2012 and 4.8884 million tons in 2020-2021,respectively,and a decrease of 11.3716 million tons from 2012 to 2020.②The carbon emissions of the water system in Zhejiang accounted for more than 95%,which had a decisive impact on the total change in the carbon emissions of the water system.③Urbanization rate was a key driving factor for changes in carbon emissions across various water system sectors,while population primarily affected carbon emissions from industrial and residential domestic water use.④The carbon emissions from the water system were at the lowest level under the low-carbon scenario and at the highest level under the extensive or coarse development scenario.Residential and public facility water consumption will be the main source of carbon emissions in the water system in the Zhejiang Province.Therefore,while controlling population growth and promoting urbanization,carrying out water-saving and emission reduction measures,including improving water use efficiency,optimizing the structure of water use,and reducing carbon emission intensity are necessary to effectively promote carbon reduction in the water system.
关 键 词:水资源 生命周期 碳排放 情景预测 STIRPAT模型
分 类 号:X24[环境科学与工程—环境科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63