检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴建高 汪泓[1] 张磊[2] 杨隆珊 彭俊杰 龚明冲 WU Jian-gao;WANG Hong;ZHANG Lei;YANG Long-shan;PENG Jun-jie;GONG Ming-chong(Mining College,Guizhou University,Guiyang 550025,China;Institute of Surveying and Mapping,Guizhou Geology and Mineral Exploration Bureau,Guiyang 550025,China)
机构地区:[1]贵州大学矿业学院,贵阳550025 [2]贵州省地质矿产勘查开发局测绘院,贵阳550025
出 处:《环境科学》2025年第4期2313-2324,共12页Environmental Science
基 金:国家自然科学基金项目(42301440)。
摘 要:针对贵州喀斯特山区耕地土壤有机质(SOM)含量高光谱遥感预测的精度和泛化能力不足的问题,提出了结合残差网络(ResNet)和多头注意力机制(MHAM)的一维高光谱反射数据模型(ResNet-MHAM).首先,采集贵州13个县市区188个土壤样品并检测光谱信息;其次,基于不同层数(34、50、101和152层)的ResNet结构并结合MHAM进行优化构建模型;最后,使用30%的数据集和十折交叉验证进行模型验证.实验结果显示,50层ResNet结构与MHAM的结合模型,在决定系数(R2)达到0.9172,均方根误差(RMSE)为7.4549 g·kg^(−1),表现出优于BPNN、SVM、PLSR、GPR和RF模型的准确性和泛化能力.研究结果为贵州山区SOM含量的高光谱预测提供了新的有效方法.In response to the lack of accuracy and generalization challenges in predicting soil organic matter(SOM)content in the karst mountainous agricultural soils of the Guizhou Province using hyperspectral remote sensing,a one-dimensional hyperspectral reflectance data model,termed ResNet-MHAM,was proposed.First,soil samples from 188 locations across 13 counties and districts in Guizhou were collected,and their spectral information was analyzed.Second,the ResNet structure was optimized in combination with MHAM across different layers(34,50,101,and 152 layers)to construct the model presented in this study.Finally,model validation was conducted using 30%of the dataset and 10-fold crossvalidation.Experimental results demonstrated that the optimized version of the model combining 50-layer ResNet structure with MHAM achieved a coefficient of determination(R2)of 0.9172 and a root mean square error(RMSE)of 7.4549 g·kg^(−1),showcasing superior accuracy and generalization capabilities compared to commonly used models such as BPNN,SVM,PLSR,GPR,and RF.These findings provide a novel and effective approach for hyperspectral prediction of SOM content in the mountainous regions of Guizhou.
关 键 词:高光谱 残差网络(ResNet) 多头注意力机制(MHAM) 土壤有机质(SOM) 山区耕地
分 类 号:X144[环境科学与工程—环境科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49