检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:关雪梅[1] 田国刚 GUAN Xuemei;TIAN Guogang(School of Management,Liaoning University of International Business and Economics,Dalian 116052,China;Hualu Technology and Culture(Dalian)Co.Ltd.,Dalian 116023,China)
机构地区:[1]辽宁对外经贸学院管理学院,辽宁大连116052 [2]华录科技文化(大连)有限公司,辽宁大连116023
出 处:《安阳师范学院学报》2025年第2期11-16,共6页Journal of Anyang Normal University
基 金:2021年辽宁省普通高等教育本科教学改革研究一般项目“应用型高校优质教学资源汇聚、整合与共享机制研究与实践”(项目编号:2021SJJGYB03)。
摘 要:提出并研究了一种基于Canny算子的改进数字图像边缘检测算法,在Canny算子基础上,引入了自适应高斯滤波及多尺度边缘响应融合策略,以提高边缘检测的鲁棒性和精度。不同噪声水平下的图像实验验证结果表明,改进后的算法在边缘定位精度、抗噪性能以及计算效率方面均优于传统Canny算子,能够更加准确地提取图像中的重要边缘信息。研究为数字图像处理中的边缘检测问题提供了新思路。The Canny operator,as a classic edge detection technique,is widely used for its good localization accuracy and low false detection rate in detecting image edges.However,traditional Canny operators are prone to noise interference when processing images with high noise levels,leading to a decrease in edge detection performance.Therefore,this article proposes and studies an improved digital image edge detection algorithm based on the Canny operator.On the basis of the Canny operator,adaptive Gaussian filtering and multi–scale edge response fusion strategy are introduced to improve the robustness and accuracy of edge detection.Through experimental verification of images with different levels of noise,the results show that the improved algorithm outperforms the traditional Canny operator in terms of edge localization accuracy,noise resistance,and computational efficiency,and can more accurately extract important edge information from images.This study provides new ideas for edge detection in digital image processing and lays the foundation for the development of edge detection algorithms in complex scenes in the future.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49