一种新的基于Canny算子数字图像边缘检测算法  

A New Digital Image Edge Detection Analysis Based on Canny Operator

在线阅读下载全文

作  者:关雪梅[1] 田国刚 GUAN Xuemei;TIAN Guogang(School of Management,Liaoning University of International Business and Economics,Dalian 116052,China;Hualu Technology and Culture(Dalian)Co.Ltd.,Dalian 116023,China)

机构地区:[1]辽宁对外经贸学院管理学院,辽宁大连116052 [2]华录科技文化(大连)有限公司,辽宁大连116023

出  处:《安阳师范学院学报》2025年第2期11-16,共6页Journal of Anyang Normal University

基  金:2021年辽宁省普通高等教育本科教学改革研究一般项目“应用型高校优质教学资源汇聚、整合与共享机制研究与实践”(项目编号:2021SJJGYB03)。

摘  要:提出并研究了一种基于Canny算子的改进数字图像边缘检测算法,在Canny算子基础上,引入了自适应高斯滤波及多尺度边缘响应融合策略,以提高边缘检测的鲁棒性和精度。不同噪声水平下的图像实验验证结果表明,改进后的算法在边缘定位精度、抗噪性能以及计算效率方面均优于传统Canny算子,能够更加准确地提取图像中的重要边缘信息。研究为数字图像处理中的边缘检测问题提供了新思路。The Canny operator,as a classic edge detection technique,is widely used for its good localization accuracy and low false detection rate in detecting image edges.However,traditional Canny operators are prone to noise interference when processing images with high noise levels,leading to a decrease in edge detection performance.Therefore,this article proposes and studies an improved digital image edge detection algorithm based on the Canny operator.On the basis of the Canny operator,adaptive Gaussian filtering and multi–scale edge response fusion strategy are introduced to improve the robustness and accuracy of edge detection.Through experimental verification of images with different levels of noise,the results show that the improved algorithm outperforms the traditional Canny operator in terms of edge localization accuracy,noise resistance,and computational efficiency,and can more accurately extract important edge information from images.This study provides new ideas for edge detection in digital image processing and lays the foundation for the development of edge detection algorithms in complex scenes in the future.

关 键 词:图像处理 CANNY算子 边缘检测 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象