具有三次-五次竞争非线性的波导阵列中的无序孤子  

Disordered Solitons in Waveguide Arrays with Competing Cubic-Quintic Nonlinearities

在线阅读下载全文

作  者:曹彪培 何华鑫 王晨辉 陈园园[1] 张永平 Cao Biaopei;He Huaxin;Wang Chenhui;Chen Yuanyuan;Zhang Yongping(Department of Physics,Shanghai University,Shanghai 200444,China)

机构地区:[1]上海大学物理系,上海200444

出  处:《光学学报》2025年第1期194-203,共10页Acta Optica Sinica

基  金:国家自然科学基金(112374247)。

摘  要:研究具有三次-五次非线性的无序波导阵列中孤子的存在性、稳定性和传输动力学。在半无限能隙中,竞争非线性和无序势的相互作用允许存在两类具有复杂结构的孤子,分别起源于安德森模和其他局域态。前者支持无阈值激发,后者的功率在有限值处截断。在第一能隙中也存在起源于安德森模的无序孤子。然后,研究了竞争非线性情况下功率曲线,存在多稳态现象。最后,通过线性稳定性分析和数值传输模拟,研究了无序孤子的稳定性。这一发现为探索高阶非线性介质中的无序孤子的物理性质提供了新的思路。Objective The new phenomena arising from Anderson localization in nonlinear optical systems attract significant research interest.Previous experiments have achieved the localization of light waves within disordered media,and extensive theoretical studies show the presence of optical solitons in nonlinear Schr?dinger equations show disordered potentials.However,the presence,stability,and dynamics of certain disordered solitons in cubic-quintic nonlinear dielectric waveguides with disordered potentials remain unexplored.Additionally,the phenomenon and mechanism of competitive cubic-quintic nonlinearity interactions in disordered waveguide arrays are not fully understood.This study provides a new approach for exploring the physical properties of disordered solitons in high-order nonlinear media.Methods We primarily use the Newton iteration method to solve the nonlinear Schr?dinger equation and obtain soliton solutions.Once the steady-state solutions are determined,verifying their stability is crucial.We employ two methods to assess soliton stability:direct dynamic simulations and linear stability analysis.In linear stability analysis,perturbations are introduced to the steady-state solution,and eigenvalues are calculated by diagonalizing the Hamiltonian matrix.If any eigenvalue has a positive real part,the perturbation grows exponentially,indicating instability.Conversely,if all eigenvalues have non-positive real parts,the solution is considered stable.Soliton propagation is simulated using the stepwise Fourier method,which separates the Hamiltonian into linear and nonlinear components,each treated with different approaches.Finally,we compare transmission simulation results with those from the linear stability analysis.Results and Discussions We first investigate the system's band structure and the Anderson modes in the band under linear conditions,as illustrated in Fig.1.Anderson modes can randomly appear at any lattice position,and as the eigenvalue b increases,these modes become less localized.Under nonlinear con

关 键 词:非线性光学 无序势 波导阵列 三次-五次非线性 孤子 多稳态 

分 类 号:O436[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象