检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王家辉 彭艳丽 Wang Jiahui;Peng Yanli(Aier College of Ophthalmology,Central South University,Changsha 410000,China)
出 处:《中华眼科杂志》2025年第4期304-309,共6页Chinese Journal of Ophthalmology
基 金:重庆市科卫联合医学科研项目面上项目(2023MSXM122)。
摘 要:屈光不正是导致视觉障碍的重要因素,给社会经济带来较大负担。屈光手术虽为重要矫正手段,但在临床实践中面临术前精准筛查、个性化方案设计、术后并发症预防等难题。本研究聚焦机器学习在屈光手术领域的应用,经综合分析相关文献发现,机器学习在多个关键环节发挥积极作用。术前筛查中,可有效提升圆锥角膜筛查准确性,辅助精准选定手术候选人及确定手术方式;手术设计时,能优化手术方案,提高手术可预测性;术后评估预测方面,有助于判断手术效果、识别屈光回退高危患者,并辅助计算人工晶状体度数。不过,机器学习在实际应用中存在算法“黑箱性”、数据质量参差不齐、缺乏多模态数据融合等局限。本文通过系统梳理其应用现状与局限,期望为后续研究提供参考,助力克服困难,推动机器学习在屈光手术领域更深入、更合理地应用,从而提升屈光手术的整体水平。Refractive error is a significant factor contributing to visual impairment,imposing a relatively large burden on the social economy.Although refractive surgery is an important corrective method,it faces challenges in clinical practice,such as precise preoperative screening,personalized surgical plan design,and prevention of postoperative complications.This study focuses on the application of machine learning in the field of refractive surgery.Through a comprehensive analysis of relevant literature,it is found that machine learning plays a positive role in multiple key aspects.In preoperative screening,it can effectively improve the accuracy of keratoconus screening and assist in precisely selecting surgical candidates and determining surgical methods.During surgical design,it can optimize the plans for corneal refractive surgery and implantable Collamer lens implantation,enhancing the predictability of surgeries.In postoperative evaluation and prediction,it helps to assess surgical outcomes,identify high-risk patients for refractive regression,and assist in calculating the power of intraocular lenses.However,machine learning has limitations in practical applications,such as the"black box"nature of algorithms,uneven data quality,and lack of multimodal data integration.By systematically reviewing its application status and limitations,this review hopes to provide references for subsequent research,help overcome difficulties,and promote the more in-depth and rational application of machine learning in the field of refractive surgery,thereby improving the overall level of refractive surgery.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200