基于CEEMD-SE-PSR-BP的短期风速预测  

SHORT-TERM WIND SPEED FORECASTING BASED ON CEEMD-SE-PSR-BP METHOD

在线阅读下载全文

作  者:高晟扬 李法社[2] Gao Shengyang;Li Fashe(Faculty of Mechanical and Electrical Engineering,Yunnan Agricultural University,Kunming 650201,China;School of Metallurgical and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,China)

机构地区:[1]云南农业大学机电工程学院,昆明650201 [2]昆明理工大学冶金与能源工程学院,昆明650093

出  处:《太阳能学报》2025年第4期415-422,共8页Acta Energiae Solaris Sinica

基  金:云南省科技厅基础研究项目(202401BD070001-072);云南省教育厅科学研究项目(2024J0453);云南农业大学大学生创新项目(XJ2023240)。

摘  要:为提升预测的准确度,提出一种互补集合经验模态分解(CEEMD)、样本熵(SE)、相空间重构(PSR)以及神经网络(BP)的短期风速预测新模型。首先运用CEEMD技术对风速时间序列进行拆解,化繁为简,分离出多个子序列。随后,计算每个子序列的SE,从SE的特征中重组风速序列。继而,将各子序列的预测结果进行相空间重构,获取神经网络预测的输入输出样本。最后运用神经网络预测每个样本,并将所有预测结果累加。此外,还对风电场的实际运行数据进行试验,并将模型的预测结果与其他预测方法进行对比,实验结果显示出此模型在提高风速预测精度方面的显著优势。Accurate and reliable wind speed forecasting is vital for maintaining the stability of power systems.To improve prediction accuracy,this study introduces a novel short-term wind speed prediction model that integrates complementary ensemble empirical mode decomposition(CEEMD),sample entropy(SE),phase space reconstruction(PSR),and a backpropagation neural network(BP).Initially,CEEMD is employed to decompose the wind speed time series into multiple intrinsic mode functions(IMFs),thereby simplifying the data structure.Following this,the SE of each IMF is calculated,and the wind speed sequence is reconstructed based on SE characteristics.Subsequently,the prediction results of each IMF undergo phase space reconstruction,yielding input-output samples for neural network prediction.Finally,the BP neural network is utilized to forecast each sample,and the predicted values are aggregated.The proposed model is evaluated using real-world data from a wind farm,and its performance is compared with other prediction methods.Experimental results demonstrate that this model significantly enhances wind speed prediction accuracy.

关 键 词:风速预测 样本熵 互补集合经验模态分解 相空间重构 神经网络 时间序列 

分 类 号:TM614[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象