检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李丙焱 郭学广 郑庆军 LI Bingyan;GUO Xueguang;ZHENG Qingjun(CNOOC Energy Technology&Services Limited,Tianjin 300452,China)
机构地区:[1]中海油能源发展股份有限公司,天津300452
出 处:《天津科技》2025年第4期70-73,共4页Tianjin Science & Technology
摘 要:针对海上平台人员作业过程监控需求,以现场人员劳保用品穿戴检测为目标,引入SE注意力机制和Focaleriou损失函数,对YOLOv9模型进行优化,以提高模型的特征提取能力和检测精度。模型优化前后纵向对比试验表明,改进模型的mAP@0.5提高了3.0%,反映了改进模型的检测精度优势。与其他常用模型的横向对比结果表明,改进模型在多个目标上的F1性能分数提升明显,说明改进模型泛化性能较好。改进模型实现了对现场作业人员及其劳保用品穿戴情况的高精度检测。Based on the operation process monitoring requirements of workers on offshore platforms,taking the wearing detection of labor protection appliances of on-site workers as the study goal,the SE attention mechanism and Focaleriou loss function are introduced to optimize the YOLOv9 model so as to improve the feature extraction ability and detection accuracy of YOLOv9 model.The longitudinal comparison experiment before and after model optimization shows that the mAP@0.5 value of improved model is increased by 3.0% compared to the original model,which proves the detection accuracy advantage of the improved model.The horizontal comparison experiment with other commonly used models shows that the improved model has highest F1 scores on multiple targets,which indicates that the improved model has better generalization performance.The improved model achieves high-precision detection of on-site workers and their wearing of labor protection appliances.
关 键 词:海上平台 YOLOv9模型 劳保用品 目标检测 模型优化
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7