我国慢性病防治政策文本的量化分析:基于政策工具和政策演进及政策主体的三维框架  

Quantitative Analysis of Chronic Disease Prevention and Treatment Policy Texts in China:Three-dimensional Framework Based on Policy Tools,Policy Evolution and Policy Subjects

在线阅读下载全文

作  者:龙春晓 李承璐 范阳东[1] 石磊 LONG Chunxiao;LI Chenglu;FAN Yangdong;SHI Lei(School of Health Management,Guangzhou Medical University,Guangzhou 511436,China;Social Science Key Laboratory of Guangdong Higher Education Institutes for Health Management Policy and Precision Health Services,Southern Medical University,Guangzhou 510515,China;Social Science Key Laboratory of Guangdong Higher Education Institutes for Health Governance Based on Big Data Utilization,Guangzhou Medical University,Guangzhou 511436,China;Guangdong-Hong Kong-Macao Greater Bay Area Medical and Health Industry High Quality Development Rule of Law Guarantee Research Center,Guangzhou Medical University,Guangzhou 511436,China)

机构地区:[1]广州医科大学卫生管理学院,广东省广州市511436 [2]广东省高校健康管理政策与精准健康服务协同创新研究哲学社会科学重点实验室,广东省广州市510515 [3]广东省高校基于大数据利用的卫生健康治理哲学社会科学重点实验室,广东省广州市511436 [4]粤港澳大湾区医药健康产(行)业高质量发展法治保障研究中心,广东省广州市511436

出  处:《中国全科医学》2025年第20期2457-2463,2500,共8页Chinese General Practice

基  金:国家自然科学基金资助项目(72104098);广东省基础与应用基础研究基金(2023A1515010902)。

摘  要:背景我国对慢性病防治工作日益重视,政策数量和种类呈增长趋势。随着人口老龄化的加剧,多重慢病成为公共健康领域面临的关键挑战,亟需优化相关政策。目的旨在揭示慢性病政策的特征、重点领域,并识别政策改进的潜在方向。方法基于政策工具、政策演进和政策主体的三维框架,采用内容分析法,通过NVivo 20.0软件对2009年1月—2024年1月发布的慢性病相关政策文件进行编码及分类分析。运用社会网络分析法和Ucinet 6.0软件对政策主体合作网络进行分析,并使用Excel 2021进行统计分析。结果对纳入的68份政策文件进行分析,识别出政策工具的使用共计279次,其中供给型工具135次,需求型工具27次,环境型工具117次。国务院办公厅涉及的政策工具参考点最多(35.48%,99/279),全国人民代表大会及其常务委员会最少(2.87%,8/279)。社会网络分析中政策主体合作网络密度为0.631,国家卫生健康委员会的中心度最高。对68份政策进行分析,随着政策演进,政策工具数量与种类呈上升态势,但仍以供给型政策工具为主(35份),且全国人民代表大会及其常务委员会涉及较少(3份)。此外,68份政策中涉及多重慢病的政策仅10份。结论政策工具使用存在结构性不均衡,政策主体间协同性有待加强,多重慢病相关政策数量有限,缺乏专项政策。为应对慢性病防治挑战,建议优化政策工具配置,强化政策主体协同作用,并推动制定多重慢病专项政策,扩大政策覆盖面,且需从单病种管理模式转向多病共管模式,全面提升慢性病综合防治能力。Background China is increasingly emphasizing the prevention and control of chronic diseases,with the number and variety of related policies showing a growing trend.With the intensification of population aging,multimorbidity has become a critical challenge in the field of public health,necessitating the urgent optimization of relevant policies.Objective This study aims to reveal the characteristics and priority areas of chronic disease policies and identify potential directions for policy improvement.Methods Based on a three-dimensional framework of policy tools,policy evolution,and policy actors,content analysis was conducted using NVivo 20.0 software to encode and classify relevant policy documents issued from January 2009 to January 2024.Social network analysis was applied using Ucinet 6.0 software to examine the collaboration network among policy actors,and statistical analyses were performed using Excel 2021.Results Analysis of the 68 included policy documents identified a total of 279 references to policy tool usage,comprising 135 instances of supply-side tools,27 instances of demandside tools,and 117 instances of environmental tools.The General Office of the State Council accounted for the highest proportion of policy tool references(35.48%,99/279),while the National People's Congress(NPC)and its Standing Committee accounted for the lowest(2.87%,8/279).In the social network analysis,the collaboration network density among policy actors was 0.631,with the National Health Commission exhibiting the highest centrality.Further analysis of the 68 policies revealed an increasing trend in both the number and variety of policy tools as policies evolved,though supply-side tools remained predominant(35 policies).The NPC and its Standing Committee were involved in relatively few policies(3 policies).Moreover,only 10 out of the 68 policies addressed multimorbidity.Conclusion The results indicate structural imbalances in the use of policy tools and insufficient collaboration among policy actors.The number of policies add

关 键 词:慢性病 多重慢病 政策工具 社会网络分析 政策文本分析 

分 类 号:R36[医药卫生—病理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象