A variational quantum algorithm for the Poisson equation based on the banded Toeplitz systems  

在线阅读下载全文

作  者:Xiaoqi Liu Yuedi Qu Ming Li Shu-Qian Shen 

机构地区:[1]College of Science,China University of Petroleum,Qingdao 266580,China

出  处:《Communications in Theoretical Physics》2025年第4期23-33,共11页理论物理通讯(英文版)

基  金:supported by the Shandong Provincial Natural Science Foundation for Quantum Science under Grant No.ZR2021LLZ002;the Fundamental Research Funds for the Central Universities under Grant No.22CX03005A。

摘  要:To solve the Poisson equation it is usually possible to discretize it into solving the corresponding linear system Ax=b.Variational quantum algorithms(VQAs)for the discretized Poisson equation have been studied before.We present a VQA based on the banded Toeplitz systems for solving the Poisson equation with respect to the structural features of matrix A.In detail,we decompose the matrices A and A^(2)into a linear combination of the corresponding banded Toeplitz matrix and sparse matrices with only a few non-zero elements.For the one-dimensional Poisson equation with different boundary conditions and the d-dimensional Poisson equation with Dirichlet boundary conditions,the number of decomposition terms is less than that reported in[Phys.Rev.A 2023108,032418].Based on the decomposition of the matrix,we design quantum circuits that efficiently evaluate the cost function.Additionally,numerical simulation verifies the feasibility of the proposed algorithm.Finally,the VQAs for linear systems of equations and matrix-vector multiplications with the K-banded Toeplitz matrix T_(n)^(K)are given,where T_(n)^(K)∈R^(n×n)and K∈O(ploylogn).

关 键 词:variational quantum algorithm Poisson equation quantum circuit 

分 类 号:O241.6[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象