检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱懿 蔡满春[1] 姚利峰 陈咏豪 张溢文 Zhu Yi;Cai Manchun;Yao Lifeng;Chen Yonghao;Zhang Yiwen(Institute of Information and Network Security,People’s Public Security University of China,Beijing 100038)
机构地区:[1]中国人民公安大学信息网络安全学院,北京100038
出 处:《信息安全研究》2025年第5期439-446,共8页Journal of Information Security Research
基 金:中国人民公安大学2022年基本科研业务费课题(2022JKF02009);中国人民公安大学网络空间安全执法技术双一流创新研究专项(2023SYL07);高等学校学科创新引智基地资助项目(B20087)。
摘 要:匿名通信系统洋葱路由(the onion router, Tor)易被不法分子利用,破坏网络环境和社会稳定,网站指纹识别能对其有效监管.Tor用户行为和网站内容随时间变化,产生概念漂移问题,使模型性能下降,且现有模型参数量大、效率低.针对上述问题,提出基于主动学习的Tor网站指纹识别模型TorAL(Tor active learning),将图像分类模型ShuffleNetV2用于特征提取和分类,使用Haar小波变换改进其下采样模块,以无损降低图像分辨率,模型识别准确率优于现有模型.此外,结合主动学习,用少量对模型贡献较大的数据进行训练,有效应对概念漂移问题.The anonymous communication system Tor is often exploited by criminals,disrupting the network environment and social stability.Website fingerprinting can effectively monitor Tor activities.However,user behavior and website content on Tor change over time,leading to the problem of concept drift,which degrades model performance.Additionally,existing models suffer from large parameter sizes and low efficiency.To address these issues,a Tor website fingerprinting model based on active learning,named TorAL,is proposed.This method utilizes the image classification model ShuffleNetV2 for feature extraction and classification,and improves its downsampling module with Haar wavelet transform to losslessly reduce image resolution.The model’s recognition accuracy surpasses that of existing models.Moreover,by combining active learning,the model is trained with a small amount of highly contributive data,effectively addressing the concept drift problem.
关 键 词:洋葱路由 网站指纹识别 暗网 卷积神经网络 主动学习
分 类 号:TP309.2[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62