人工智能背景下欧盟公民数字能力框架革新及其启示  

Innovation of the European Union's Digital Competence Framework in theera of Artificial Intelligence and its Implications

在线阅读下载全文

作  者:杜瑾 DU Jin(Central Academy of Fine Arts Library,Beijing 100105,China)

机构地区:[1]中央美术学院图书馆,北京100105

出  处:《大学图书情报学刊》2025年第3期131-139,共9页Journal of Academic Library and Information Science

基  金:2022年中央美术学院自主科研项目暨中央高校基本科研业务费专项资金资助“智能时代视觉艺术专业学生信息素养与思维能力的协同培养路径研究”(2022QD020)。

摘  要:数字素养是数字社会中的一项基本生存技能。随着人工智能技术的广泛应用,数字素养教育面临新的机遇和挑战。文章通过分析欧盟公民数字能力框架(DigComp)的背景、起源以及发展历程,比较DigComp不同版本的演变,深入了解其在维度设置、内容更新和应用拓展方面的变化。进入人工智能时代,DigComp框架通过纳入人工智能等新兴技术的相关知识、技能和态度示例,展示了其前瞻性和适用性,为公民在数字社会中更好地理解和利用新技术奠定了基础。这对我国在数字素养政策制定、教育实施和框架发展方面产生了启示,有助于我国数字素养教育适应科技发展的新趋势,教育内容和实践紧跟时代的步伐。Digital literacy is a fundamental survival skill in the digital society.With the widespread application of technologies such as artificial intelligence,digital literacy education faces new opportunities and challenges.This study conducts an in-depth analysis of the background,origin and development process of the European Digital Competence Framework for Citizens(DigComp),comparing the evolution of different versions of DigComp to understand its changes in dimension settings,content updates,and application expansions.In the era of artificial intelligence,the DigComp framework demonstrates its foresight and applicability by incorporating knowledge,skills,and attitude examples related to emerging technologies such as AI,laying a foundation for citizens to better understand and utilize new technologies in the digital society.Based on those analysis,the study proposes suggestions for China in digital literacy policy formulation,education implementation,and framework development,to ensure that China's digital literacy education can adapt to new trends in technological development,with educational content and practices keeping pace with the times.

关 键 词:人工智能 数字素养 数字能力 欧盟 DigComp 

分 类 号:G434[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象