背景支持下的全域特征响应图像分类网络  

Background-Supported Global Feature Response Image Classification Network

在线阅读下载全文

作  者:姜文涛[1] 李威达 张晟翀[2] JIANG Wentao;LI Weida;ZHANG Shengchong(College of Software,Liaoning Technical University,Huludao,Liaoning 125105,China;Key Laboratory of Optoelectronic Information Control and Safety Technology,Tianjin 300308,China)

机构地区:[1]辽宁工程技术大学软件学院,辽宁葫芦岛125105 [2]光电信息控制和安全技术重点实验室,天津300308

出  处:《计算机科学与探索》2025年第5期1280-1294,共15页Journal of Frontiers of Computer Science and Technology

基  金:国家自然科学基金(61601213);辽宁省自然科学基金(20170540426);辽宁省教育厅重点基金(LJYL049)。

摘  要:针对目前图像分类方法缺少背景信息支持,导致模型分类精度受限的问题,提出背景支持下的全域特征响应图像分类网络(BGRNet)。该网络以WRN残差网络为基础,提出新的背景支持激活函数BS,通过BS激活函数引入背景支持机制,使网络在关注目标前景信息的同时,也能够平滑地关注背景信息;提出全域特征响应模块(BGR),并将BGR嵌入到残差分支中,对图像全域特征进行还原,在一定程度上减少因卷积操作而产生的特征信息损失;调整残差块内部网络结构,通过调整残差块中激活函数、批量归一化的前向传播顺序并删除Dropout(Dropout Regularization),放大BS激活函数对整体网络模型的背景支持作用,促进背景信息在网络中的有效传递。BGRNet通过引入背景信息支持机制,不仅考虑了目标前景信息在图像分类过程中的支持作用,还考虑了背景信息在分类过程中的支持作用,在提升网络分类精度的同时,有效提高了网络训练效率。在FashionMNIST、KMNIST、CIFAR-10、CIFAR-100、SVHN数据集上的实验结果表明,BGRNet显著提高了基线模型的分类性能,且与当前主流方法相比,BGRNet具有较高的分类准确率和较强的泛化性能。The lack of background information support in current image classification methods leads to the limited classifi-cation accuracy of the model.Aiming at this problem,a background-supported global feature response image classification network(BGRNet)is proposed.Firstly,based on WRN(wide residual networks)residual networks,a new background-supported activation function BS(background-supported)is proposed,which introduces a background support mechanism through the BS activation function,so that the network can focus on the background information smoothly while focusing on the foreground information of the target.Then,a full-domain feature response module BGR(background-supported global feature response)is proposed,and BGR is embedded into the residual branch to restore the image full domain fea-tures,which reduces the loss of feature information due to the convolution operation to a certain extent.Finally,this paper adjusts the internal network structure of the residual block by adjusting the activation function,the forward propagation order of batch normalization and removing Dropout(Dropout Regularization),amplifying the background support role of the BS activation function to the overall network model,and promoting the effective transmission of background information in the network.By introducing the background information support mechanism,BGRNet not only considers the support role of the target foreground information in the process of image classification,but also considers the support role of the background information in the classification process,which effectively improves the network training efficiency while im-proving the network classification accuracy.Experimental results on FashionMNIST,KMNIST,CIFAR-10,CIFAR-100 and SVHN datasets show that BGRNet significantly improves the classification performance of the baseline model,and compared with the current mainstream methods,BGRNet has higher classification accuracy and stronger generalization performance.

关 键 词:图像分类 背景支持 全域特征响应 特征还原 残差网络 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象